scholarly journals IL-35 subunit EBI3 alleviates bleomycin-induced pulmonary fibrosis via suppressing DNA enrichment of STAT3

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Donghong Chen ◽  
Guofeng Zheng ◽  
Qing Yang ◽  
Le Luo ◽  
Jinglian Shen

Abstract Background IL-35 subunit EBI3 is up-regulated in pulmonary fibrosis tissues. In this study, we investigated the pathological role of EBI3 in pulmonary fibrosis and dissected the underlying molecular mechanism. Methods Bleomycin-induced pulmonary fibrosis mouse model was established, and samples were performed gene expression analyses through RNAseq, qRT-PCR and Western blot. Wild type and EBI3 knockout mice were exposed to bleomycin to investigate the pathological role of IL-35, via lung function and gene expression analyses. Primary lung epithelial cells were used to dissect the regulatory mechanism of EBI3 on STAT1/STAT4 and STAT3. Results IL-35 was elevated in both human and mouse with pulmonary fibrosis. EBI3 knockdown aggravated the symptoms of pulmonary fibrosis in mice. EBI3 deficiency enhanced the expressions of fibrotic and extracellular matrix-associated genes. Mechanistically, IL-35 activated STAT1 and STAT4, which in turn suppressed DNA enrichment of STAT3 and inhibited the fibrosis process. Conclusion IL-35 might be one of the potential therapeutic targets for bleomycin-induced pulmonary fibrosis.

2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
An-Hsuan Lin ◽  
Meng-Han Liu ◽  
Hsin-Kuo Ko ◽  
Diahn-Warng Perng ◽  
Tzong-Shyuan Lee ◽  
...  

The mechanism underlying the inflammatory role of TRPA1 in lung epithelial cells (LECs) remains unclear. Here, we show that cigarette smoke extract (CSE) sequentially induced several events in LECs. The Ca2+influx was prevented by decreasing extracellular reactive oxygen species (ROS) with the scavenger N-acetyl-cysteine, removing extracellular Ca2+with the chelator EGTA, or treating with the TRPA1 antagonist HC030031. NADPH oxidase activation was abolished by its inhibitor apocynin, EGTA, or HC030031. The increased intracellular ROS was halted by apocynin, N-acetyl-cysteine, or HC030031. The activation of the MAPKs/NF-κB signaling was suppressed by EGTA, N-acetyl-cysteine, or HC030031. IL-8 induction was inhibited by HC030031 or TRPA1 siRNA. Additionally, chronic cigarette smoke (CS) exposure in wild-type mice induced TRPA1 expression in LECs and lung tissues. In CS-exposuretrpa1−/−mice, the increased BALF level of ROS was similar to that of CS-exposure wild-type mice; yet lung inflammation was lessened. Thus, in LECs, CSE may initially increase extracellular ROS, which activate TRPA1 leading to an increase in Ca2+influx. The increased intracellular Ca2+contributes to activation of NADPH oxidase, resulting in increased intracellular ROS, which activate the MAPKs/NF-κB signaling leading to IL-8 induction. This mechanism may possibly be at work in mice chronically exposed to CS.


2021 ◽  
Author(s):  
Chilakamarti V. Ramana

AbstractType I interferons (IFN α/β) play a central role in innate immunity to respiratory viruses, including coronaviruses. Genetic defects in type I interferon signaling were reported in a significant proportion of critically ill CoOVID-19 patients. Extensive studies on interferon-induced intracellular signal transduction pathways led to the elucidation of the Jak-Stat pathway. Furthermore, advances in gene expression profiling by microarrays have revealed that type I interferon rapidly induced multiple transcription factor mRNA levels. In this study, transcription factor profiling in the transcriptome was used to gain novel insights into the role of inducible transcription factors in response to type I interferon signaling in immune cells and in lung epithelial cells after SARS-CoV-2 infection. Modeling the interferon-inducible transcription factor mRNA data in terms of distinct sub-networks based on biological functions such as antiviral response, immune modulation, and cell growth revealed enrichment of specific transcription factors in mouse and human immune cells. The evolutionarily conserved core type I interferon gene expression consists of the inducible transcriptional factor mRNA of the antiviral response sub-network and enriched in granulocytes. Analysis of the type I interferon-inducible transcription factor sub-networks as distinct protein-protein interaction pathways revealed insights into the role of critical hubs in signaling. Interrogation of multiple microarray datasets revealed that SARS-CoV-2 induced high levels of IFN-beta and interferon-inducible transcription factor mRNA in human lung epithelial cells. Transcription factor mRNA of the three major sub-networks regulating antiviral, immune modulation, and cell growth were differentially regulated in human lung epithelial cell lines after SARS-CoV-2 infection and in the tissue samples of COVID-19 patients. A subset of type I interferon-inducible transcription factors and inflammatory mediators were specifically enriched in the lungs and neutrophils of Covid-19 patients. The emerging complex picture of type I IFN transcriptional regulation consists of a rapid transcriptional switch mediated by the Jak-Stat cascade and a graded output of the inducible transcription factor activation that enables temporal regulation of gene expression.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panpan Liu ◽  
Lei Zhao ◽  
Yuxia Gu ◽  
Meilan Zhang ◽  
Hongchang Gao ◽  
...  

Abstract Background Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung diseases with a poor prognosis. Long non-coding RNAs (lncRNAs) have been reported to be involved in IPF in several studies. However, the role of lncRNA SNHG16 in IPF is largely unknown. Methods Firstly, experimental pulmonary fibrosis model was established by using bleomycin (BML). Histology and Western blotting assays were used to determine the different stages of fibrosis and expression of several fibrosis biomarkers. The expression of SNHG16 was detected by quantitative real-time polymerase chain reaction (qRT‐PCR). EdU staining and wound-healing assay were utilized to analyze proliferation and migration of lung fibroblast cells. Molecular mechanism of SNHG16 was explored by bioinformatics, dual-luciferase reporter assay, RNA immunoprecipitation assay (RIP), and qRT-PCR. Results The expression of SNHG16 was significantly up-regulated in bleomycin-(BLM) induced lung fibrosis and transforming growth factor-β (TGF-β)-induced fibroblast. Knockdown of SNHG16 could attenuate fibrogenesis. Mechanistically, SNHG16 was able to bind and regulate the expression of miR-455-3p. Moreover, SNHG16 also regulated the expression of Notch2 by targeting miR-455-3p. Finally, SNHG16 could promote fibrogenesis by regulating the expression of Notch2. Conclusion Taken together, our study demonstrated that SNHG16 promoted pulmonary fibrosis by targeting miR-455-3p to regulate the Notch2 pathway. These findings might provide a novel insight into pathologic process of lung fibrosis and may provide prevention strategies in the future.


2021 ◽  
Vol 22 (11) ◽  
pp. 6146
Author(s):  
Dominik H. W. Leitz ◽  
Julia Duerr ◽  
Surafel Mulugeta ◽  
Ayça Seyhan Agircan ◽  
Stefan Zimmermann ◽  
...  

Recent studies found that expression of Nedd4‑2 is reduced in lung tissue from patients with idiopathic pulmonary fibrosis (IPF) and that the conditional deletion of Nedd4‑2 in lung epithelial cells causes IPF-like disease in adult mice via multiple defects, including dysregulation of the epithelial Na+ channel (ENaC), TGFβ signaling and the biosynthesis of surfactant protein-C proprotein (proSP-C). However, knowledge of the impact of congenital deletion of Nedd4‑2 on the lung phenotype remains limited. In this study, we therefore determined the effects of congenital deletion of Nedd4‑2 in the lung epithelial cells of neonatal doxycycline-induced triple transgenic Nedd4‑2fl/fl/CCSP‑rtTA2S‑M2/LC1 mice, with a focus on clinical phenotype, survival, lung morphology, inflammation markers in BAL, mucin expression, ENaC function and proSP‑C trafficking. We found that the congenital deletion of Nedd4‑2 caused a rapidly progressive lung disease in neonatal mice that shares key features with interstitial lung diseases in children (chILD), including hypoxemia, growth failure, sterile pneumonitis, fibrotic lung remodeling and high mortality. The congenital deletion of Nedd4‑2 in lung epithelial cells caused increased expression of Muc5b and mucus plugging of distal airways, increased ENaC activity and proSP-C mistrafficking. This model of congenital deletion of Nedd4‑2 may support studies of the pathogenesis and preclinical development of therapies for chILD.


2004 ◽  
Vol 287 (4) ◽  
pp. L764-L773 ◽  
Author(s):  
Loretta Sparkman ◽  
Vijayakumar Boggaram

Interleukin (IL)-8, a C-X-C chemokine, is a potent chemoattractant and an activator for neutrophils, T cells, and other immune cells. The airway and respiratory epithelia play important roles in the initiation and modulation of inflammatory responses via production of cytokines and surfactant. The association between elevated levels of nitric oxide (NO) and IL-8 in acute lung injury associated with sepsis, acute respiratory distress syndrome, respiratory syncytial virus infection in infants, and other inflammatory diseases suggested that NO may play important roles in the control of IL-8 gene expression in the lung. We investigated the role of NO in the control of IL-8 gene expression in H441 lung epithelial cells. We found that a variety of NO donors significantly induced IL-8 mRNA levels, and the increase in IL-8 mRNA was associated with an increase in IL-8 protein. NO induction of IL-8 mRNA was due to increases in IL-8 gene transcription and mRNA stability. NO induction of IL-8 mRNA levels was not inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and KT-5823, inhibitors of soluble guanylate cyclase and protein kinase G, respectively, and 8-bromo-cGMP did not increase IL-8 mRNA levels. This indicated that NO induces IL-8 mRNA levels independently of changes in the intracellular cGMP levels. NO induction of IL-8 mRNA was significantly reduced by inhibitors of extracellular regulated kinase and protein kinase C. IL-8 induction by NO was also reduced by hydroxyl radical scavengers such as dimethyl sulfoxide and dimethylthiourea, indicating the involvement of hydroxyl radicals in the induction process. NO induction of IL-8 gene expression could be a significant contributing factor in the initiation and induction of inflammatory response in the respiratory epithelium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anastasia Ricci ◽  
Sara Orazi ◽  
Federica Biancucci ◽  
Mauro Magnani ◽  
Michele Menotta

AbstractAtaxia telangiectasia (AT) is a rare genetic neurodegenerative disease. To date, there is no available cure for the illness, but the use of glucocorticoids has been shown to alleviate the neurological symptoms associated with AT. While studying the effects of dexamethasone (dex) in AT fibroblasts, by chance we observed that the nucleoplasmic Lamin A/C was affected by the drug. In addition to the structural roles of A-type lamins, Lamin A/C has been shown to play a role in the regulation of gene expression and cell cycle progression, and alterations in the LMNA gene is cause of human diseases called laminopathies. Dex was found to improve the nucleoplasmic accumulation of soluble Lamin A/C and was capable of managing the large chromatin Lamin A/C scaffolds contained complex, thus regulating epigenetics in treated cells. In addition, dex modified the interactions of Lamin A/C with its direct partners lamin associated polypeptide (LAP) 2a, Retinoblastoma 1 (pRB) and E2F Transcription Factor 1 (E2F1), regulating local gene expression dependent on E2F1. These effects were differentially observed in both AT and wild type (WT) cells. To our knowledge, this is the first reported evidence of the role of dex in Lamin A/C dynamics in AT cells, and may represent a new area of research regarding the effects of glucocorticoids on AT. Moreover, future investigations could also be extended to healthy subjects or to other pathologies such as laminopathies since glucocorticoids may have other important effects in these contexts as well.


2016 ◽  
Vol 8 (17) ◽  
pp. 2017-2031 ◽  
Author(s):  
Simona Panella ◽  
Maria Elena Marcocci ◽  
Ignacio Celestino ◽  
Sergio Valente ◽  
Clemens Zwergel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document