scholarly journals Metformin exerts anti-AR-negative prostate cancer activity via AMPK/autophagy signaling pathway

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Chen ◽  
He Wang ◽  
Xinyu Geng ◽  
Dongze Zhang ◽  
Zhengyu Zhu ◽  
...  

Abstract Background Encouraged by the goal of developing an effective treatment strategy for prostate cancer, this study explored the mechanism involved in metformin-mediated inhibition of AR-negative prostate cancer. Methods Cell behaviors of DU145 and PC3 cells were determined by CCK8 test, colony formation experiment and scratch test. Flow cytometry was used to detect cell cycle distribution. Cell autophagy was induced with metformin, and an autophagy inhibitor, 3-MA, was used to assess the level of autophagy. Detection of LC3B by immunofluorescence was conducted to determine autophagy level. Cell proliferation, autophagy and cell cycle were examined by performing Western blot. DU145 and PC3 cell lines were transfected with AMPK siRNA targeting AMPK-α1 and AMPK-α2. Tumor formation experiment was carried out to evaluate the anti-prostate cancer effect of metformin in vivo. Results The inhibitory effect of metformin on the proliferation of prostate cancer cell lines was confirmed in this study, and the mechanism of such an effect was related to autophagy and the block of cell cycle at G0/G1 phase. Metformin also induced the activation of AMPK, markedly promoted expression of LC3II, and down-regulated the expression of p62/SQSTM1. Animal experiments showed that the tumor volume of metformin group was smaller, meanwhile, the levels of p-AMPK (Thr172) and LC3B were up-regulated and the Ki-67 level was down-regulated, without abnormalities in biochemical indicators. Conclusion This study found that autophagy induction might be the mechanism through which metformin suppressed the growth of AR-negative prostate cancer. Moreover, the activation of AMPK/autophagy pathway might be a therapeutically effective for treating AR-negative prostate cancer in the future.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chen Wang ◽  
Shiqing Shao ◽  
Li Deng ◽  
Shelian Wang ◽  
Yongyan Zhang

Abstract Background Radiation resistance is a major obstacle to the prognosis of cervical cancer (CC) patients. Many studies have confirmed that long non-coding RNAs (lncRNAs) are involved in the regulation of radiosensitivity of cancers. However, whether small nucleolar RNA host gene 12 (SNHG12) regulates the radiosensitivity of CC remains unknown. Methods Quantitative real-time polymerase chain reaction was used to measure the expression levels of SNHG12 and microRNA-148a (miR-148a). The radiosensitivity of cells was evaluated by clonogenic assay. Flow cytometry and caspase-3 activity assay were performed to assess the apoptosis ability and cell cycle distribution of cells. Besides, dual-luciferase reporter and RNA immunoprecipitation assay were used to verify the interaction between miR-148a and SNHG12 or cyclin-dependent kinase 1 (CDK1). Also, the protein levels of CDK1, CCND1 and γ-H2AX were detected by western blot analysis. Furthermore, in vivo experiments were conducted to verify the effect of SNHG12 on CC tumor growth. Ki-67 and TUNEL staining were employed to evaluate the proliferation and apoptosis rates in vivo. The hematoxylin and eosin (HE) staining were employed to evaluate the tumor cell morphology. Results SNHG12 was upregulated in CC tissues and cells, and its knockdown improved the radiosensitivity by promoting the radiation-induced apoptosis and cell cycle arrest of CC cells. Also, miR-148a could be sponged by SNHG12 and could target CDK1. MiR-148a inhibitor or CDK1 overexpression could invert the promotion effect of silenced-SNHG12 on CC radiosensitivity. Meanwhile, SNHG12 interference reduced the tumor growth of CC, increased miR-148a expression, and inhibited CDK1 level in vivo. Conclusion LncRNA SNHG12 promoted CDK1 expression to regulate the sensitivity of CC cells to radiation through sponging miR-148a, indicating that SNHG12 could be used as a potential biomarker to treat the radiotherapy resistance of CC patients.


2020 ◽  
Author(s):  
Xing Zeng ◽  
Zhiquan Hu ◽  
Yuanqing Shen ◽  
Xian Wei ◽  
Jiahua Gan ◽  
...  

Abstract BackgroundAccumulating evidence indicates miR-5195-3p exerts tumor suppressive role in several tumors. However, there is limited research on the clinical significance and biological function of miR-5195-3p in prostate cancer (PCa).MethodsExpression levels of miR-5195-3p and Cyclin L1 (CCNL1) were determined using quantitative real-time PCR. The clinical significance of miR-5195-3p in PCa patients was evaluated using Kaplan-Meier survival analysis and Cox regression models. Cell proliferation and cell cycle distribution were measured by CCK-8 assay and flow cytometry, respectively. The association between miR-5195-3p and CCNL1 was analyzed by luciferase reporter assay.ResultsMiR-5195-3p expression levels were significantly downregulated in 69 paired PCa tissues compared with matched adjacent normal tissues. The decreased miR-5195-3p expression was associated with Gleason score and TNM stage, as well as worse survival prognosis. The in vitro experiments showed that miR-5195-3p overexpression suppressed the proliferation and cell cycle G1/S transition in PC-3 and DU145 cells. Elevated miR-5195-3p abundance was also demonstrated to impair tumor formation in vivo using PC-3 xenografts. Mechanistically, Cyclin L1 (CCNL1) was a direct target of miR-5195-3p in PCa cells, which was inversely correlated with miR-5195-3p in PCa tissues. Importantly, CCNL1 knockdown imitated, while overexpression reversed the effects of miR-5195-3p overexpression on PCa cell proliferation and cell cycle G1/S transition.ConclusionsOur data suggests that miR-5195-3p functions as a tumor suppressor via downregulating G1/S related CCNL1 expression in PCa.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Larissa Kido ◽  
Eun-Ryeong Hahm ◽  
Valeria Cagnon ◽  
Mário Maróstica ◽  
Shivendra Singh

Abstract Objectives Piceatannol (PIC) is a polyphenolic and resveratrol analog that is found in many vegetables consumed by humans. Like resveratrol, PIC has beneficial effects on health due to its anti-inflammatory, anti-oxidative and anti-proliferative features. However, the molecular targets of PIC in prostate cancer (PCa), which is the second most common cancer in men worldwide, are still poorly understood. Preventing cancer through dietary sources is a promising strategy to control diseases. Therefore, the aim of present study was to investigate the molecular mechanistic of actions of PIC in PCa cell lines with different genetic background common to human prostate cancer. Methods Human PCa cell lines (PC-3, 22Rv1, LNCaP, and VCaP) were treated with different doses of PIC (5–40 µM) and used for cell viability assay, measurement of total free fatty acids (FFA) and lactate, and cell cycle distribution. Results PIC treatment dose- and time-dependently reduced viability in PC-3 (androgen-independent, PTEN null, p53 null) and VCaP cells (androgen-responsive, wild-type PTEN, mutant p53). Because metabolic alterations, such as increased glucose and lipid metabolism are implicated in pathogenesis of in PCa, we tested if PIC could affect these pathways. Results from lactate and total free fatty acid assays in VCaP, 22Rv1 (castration-resistant, wild-type PTEN, mutant p53), and LNCaP (androgen-responsive, PTEN null, wild-type p53) revealed no effect of PIC on these metabolisms. However, PIC treatment delayed cell cycle progression in G0/G1 phase concomitant with the induction of apoptosis in both LNCaP and 22Rv1 cells, suggesting that growth inhibitory effect of PIC in PCa is associated with cell cycle arrest and apoptotic cell death at least LNCaP and 22Rv1 cells. Conclusions While PIC treatment does not alter lipid or glucose metabolism, cell cycle arrest and apoptosis induction are likely important in anti-cancer effects of PIC. Funding Sources São Paulo Research Foundation (2018/09793-7).


1998 ◽  
Vol 46 (5) ◽  
pp. 603-611 ◽  
Author(s):  
Torsten E. Reichert ◽  
Simon Watkins ◽  
Joanna Stanson ◽  
Jonas T. Johnson ◽  
Theresa L. Whiteside

We have previously demonstrated that interleukin-2 (IL-2) receptors, IL-2 protein, and mRNA for IL-2 are present in human carcinomas in vitro and in vivo. Carcinoma cells synchronized in the G2/M-phase of the cell cycle express significantly more intracytoplasmic IL-2 as well as IL-2R-β and -γ than tumor cells in the G0/G1-phase. Here we evaluated immunohistologically the cell cycle-dependent distribution of the proliferation-associated Ki-67 antigen and expression of the cytokine IL-2 in four different carcinoma cell lines. In addition, 34 tissue samples from patients with squamous cell carcinomas of the head and neck were simultaneously analyzed for Ki-67 and IL-2 expression and the data were correlated to the histological grade of the tumors. All tumor cell lines were shown to express IL-2 in the Golgi complex. The strongest IL-2 expression was seen in tumor cells undergoing mitosis, identified by double staining with the antibody to Ki-67. In the tumor tissue, the highest level of co-expression of IL-2 and Ki-67 was observed in poorly differentiated carcinomas, with a labeling index (LI) of 67.2% for IL-2 and 68.8% for Ki-67. Well-differentiated carcinomas showed a significantly lower expression of both proteins (LI 35.0% for IL-2 and 26.5% for Ki-67). The correlation between the labeling indices was statistically significant ( r = 0.747; p<0.001). These results demonstrate that IL-2 expression in human carcinoma tissues is strongly associated with cell proliferation and significantly correlates with the histological tumor grade.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Tianxiang Xu ◽  
Xiaoxia Wang ◽  
Xiangdong Jia ◽  
Weishi Gao ◽  
Junhua Li ◽  
...  

Abstract Background Protein regulator of cytokinesis 1 (PRC1) has been reported to play important role in the pathogenesis of various cancers. However, its role in colon cancer has not been studied. Here, we aimed to investigate the biological functions and potential mechanism of PRC1 in colon cancer. Methods The expression level of PRC1 in colon cancer tissues and cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemical (IHC) staining of a tissue microarray (TMA). Furthermore, colon cancer cell lines HCT116 and SW480 were treated with short hairpin RNAs against PRC1. The biological function of PRC1 was determined by MTT proliferation, colony formation assay, cell cycle, and apoptosis assays. Then, an in vivo tumor formation assay was conducted to explore the effects of PRC1 on tumor growth. Results The mRNA and protein expression levels of PRC1 were highly expressed in colon cancer tissues and cell lines. PRC1 expression was associated with clinicopathological characteristics and overall survival of patients with colon cancer. Knockdown of PRC1 could decrease proliferation and colony forming ability of colon cancer cells, as well as arrested more cells at G2/M phase and promoted cell apoptosis. In cancer cells, the expression pattern of protein regulators included in cell cycle and apoptosis progress were reverted by PRC1 down-regulation. Additionally, PRC1 down-regulation could suppress colon tumor growth and differentiation. Conclusions We confirmed that PRC1 was overexpressed in colon cancer and was associated with poor prognosis of colon cancer patients. PRC1 down-regulation could arrest cell cycle at G2/M stage, inhibit proliferation, and elicit apoptosis. These findings showed the potential of PRC1 to be used for therapeutic approaches in colon cancer.


2018 ◽  
Vol 47 (2) ◽  
pp. 759-773 ◽  
Author(s):  
SongTao Xiang ◽  
PeiLiang Zou ◽  
JingJing Wu ◽  
Fang Zheng ◽  
Qing Tang ◽  
...  

Background/Aims: Polyphyllin I (PPI), one of the steroidal saponins in Paris polyphylla, reportedly exhibits antitumor effects. However, the detailed mechanism underlying PPI, particularly in enhancing the effect of the androgen receptor inhibitor enzalutamide in controlling castration-resistant prostate cancer (CRPC) has not been explored. Methods: Cell viability and cell cycle distribution were measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Long non-coding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) expression was measured by quantitative real time-PCR (qRT-PCR). Western blot analysis was performed to determine the protein expression levels of MUC1, p65, and p50. Silencing of HOTAIR was evaluated using the siRNA procedure. The promoter activity of the MUC1 gene was determined using Secrete-Pair Dual Luminescence Assay Kit. Exogenous expression of HOTAIR, p65, and MUC1 was conducted by transient transfection assay. A xenograft tumor model in nude mice was used to further evaluate the effect of the combination of PPI and enzalutamide in vivo. Results: We showed that PPI significantly inhibited growth and induced cell cycle arrest in CRPC cells. PPI also decreased p65 and MUC1 protein expression and reduced HOTAIR expression. Exogenously expressed p65 resisted the PPI-inhibited expression of HOTAIR, whereas silenced HOTAIR reduced MUC1 protein but exerted no effect on the expression of p65 and p50 proteins. Conversely, exogenously expressed HOTAIR resisted the PPI-inhibited MUC1 protein expression, and excessive expression of MUC1 antagonized the PPI-inhibited cell growth. Notably, PPI combined with enzalutamide exerted a synergistic effect. Consistent with this finding, PPI inhibited tumor growth, HOTAIR expression, as well as p65 and MUC1 protein expressions in vivo. Conclusions: Our results indicate that PPI inhibits the growth of CRPC cells by inhibiting p65 protein and concomitantly reducing HOTAIR expression, thereby suppressing MUC1 gene expression. The novel regulatory interaction of p65 and HOTAIR converge in the inhibition of MUC1 expression and overall PPI response. The combination of PPI and enzalutamide exhibits synergy. This study reveals a novel mechanism underlying the synergistic inhibitory effect of PPI and enzalutamide on the growth of CRPC cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hera Saqub ◽  
Hannah Proetsch-Gugerbauer ◽  
Vladimir Bezrookove ◽  
Mehdi Nosrati ◽  
Edith M. Vaquero ◽  
...  

Abstract Cholangiocarcinoma (CCA) is a highly invasive cancer, diagnosed at an advanced stage, and refractory to surgical intervention and chemotherapy. Cyclin-dependent kinases (CDKs) regulate cell cycle progression and transcriptional processes, and are considered potential therapeutic targets for cancer. Dinaciclib is a small molecule multi-CDK inhibitor targeting CDK 2/5/9. In this study, the therapeutic efficacy of dinaciclib was assessed using patient-derived xenograft cells (PDXC) and CCA cell lines. Treatment with dinaciclib significantly suppressed cell proliferation, induced caspase 3/7 levels and apoptotic activity in PDXC and CCA cell lines. Dinaciclib suppressed expression of its molecular targets CDK2/5/9, and anti-apoptotic BCL-XL and BCL2 proteins. Despite the presence of cyclin D1 amplification in the PDXC line, palbociclib treatment had no effect on cell proliferation, cell cycle or apoptosis in the PDXC as well as other CCA cell lines. Importantly, dinaciclib, in combination with gemcitabine, produced a robust and sustained inhibition of tumor progression in vivo in a PDX mouse model, greater than either of the treatments alone. Expression levels of two proliferative markers, phospho-histone H3 and Ki-67, were substantially suppressed in samples treated with the combination regimen. Our results identify dinaciclib as a novel and potent therapeutic agent alone or in combination with gemcitabine for the treatment of CCA.


2016 ◽  
Vol 36 (23) ◽  
pp. 2903-2917 ◽  
Author(s):  
Baolei Yuan ◽  
Xingshun Wang ◽  
Chunyan Fan ◽  
Jin You ◽  
Yuchu Liu ◽  
...  

The RNA helicase DHX33 has been shown to be a critical regulator of cell proliferation and growth. However, the underlying mechanisms behind DHX33 function remain incompletely understood. We present original evidence in multiple cell lines that DHX33 transcriptionally controls the expression of genes involved in the cell cycle, notably cyclin, E2F1, cell division cycle (CDC), and minichromosome maintenance (MCM) genes. DHX33 physically associates with the promoters of these genes and controls the loading of active RNA polymerase II onto these promoters. DHX33 deficiency abrogates cell cycle progression and DNA replication and leads to cell apoptosis. In zebrafish, CRISPR-mediated knockout of DHX33 results in downregulation of cyclin A2, cyclin B2, cyclin D1, cyclin E2, cdc6, cdc20, E2F1, and MCM complexes in DHX33 knockout embryos. Additionally, we found the overexpression of DHX33 in a subset of non-small-cell lung cancers and in Ras-mutated human lung cancer cell lines. Forced reduction of DHX33 in these cancer cells abolished tumor formation in vivo . Our study demonstrates for the first time that DHX33 acts as a direct transcriptional regulator to promote cell cycle progression and plays an important role in driving cell proliferation during both embryo development and tumorigenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhen Huang ◽  
Hui Chen ◽  
Shenglin Wang ◽  
Hongxiang Wei ◽  
Xinwen Wang ◽  
...  

Despite the development of diagnostic and treatment strategies, the survival outcome of patients with osteosarcoma remains poor. Nod-like receptor protein 3 (NLRP3) plays a crucial role in the inflammasome pathway, which is related to the progression of various tumors. However, the effect of NLRP3 on osteosarcoma has not yet been well explored. Our study aimed to investigate the role of NLRP3 in the malignant biological behavior of osteosarcoma as well as its therapeutic value. Immunohistochemistry was applied to investigate the NLRP3 expression in osteosarcoma and osteochondroma specimens. Cell Counting Kit-8, colony formation, wound healing, transwell, and flow cytometry assays were used to explore the contribution of NLRP3 to the proliferation, migration, invasion, apoptosis and cell cycle distribution of osteosarcoma cells in vitro. Western blot was performed to evaluate the expression of NLRP3 and the related proteins in osteosarcoma cell lines after the blockade of NLRP3 using CY-09 and lentivirus intervention. Furthermore, tumor formation assay was used to analyze the effect of NLRP3 on the growth of osteosarcoma in vivo. The results showed that the NLRP3 protein was overexpressed in osteosarcoma, which was independently correlated with the poor prognosis of patients. Moreover, NLRP3 suppression by the inhibitor of CY-09 or lentivirus-induced gene knockdown inhibited the cell proliferation, migration, invasion and promoted the cell apoptosis and G1 cell cycle arrest in osteosarcoma via targeting the inflammasome pathway. Our in vivo results confirmed that the inhibition of NLRP3 suppressed the tumor formation of osteosarcoma. In conclusion, NLRP3 may be regarded as an independent prognostic biomarker and a potential therapeutic target for osteosarcoma.


2011 ◽  
Vol 29 (7_suppl) ◽  
pp. 22-22
Author(s):  
L. Klotz ◽  
N. Venier ◽  
A. Vandersluis ◽  
R. Besla ◽  
N. Fleshner ◽  
...  

22 Background: Prostate cancer (PCa) incidence varies by geographic location, with developed countries exhibiting higher levels of disease. Some attribute this to the “Westernized lifestyle” of high energy diets and limited physical activity with consequent obesity. Obesity and related diseases like diabetes, cause hyperinsulinemia, which upregulates pro-survival insulin/insulin-like growth factor signalling. Previous work shows diet-induced hyperinsulinemia enhances PCa tumor growth in vivo. Metformin, a diabetic treatment, reduces hyperinsulinemia, and also exhibits anti-neoplastic properties. We assessed the potential benefit of combining a standard PCa treatment (bicalutamide) with metformin in vitro and in vivo. Methods: The effect of bicalutamide and/or metformin on colony formation rates was assessed in LNCaP, PC3, DU145 and PC3AR2 PCa cell lines using clonogenic assay. Western blot and cell cycle analyses were used to elucidate mechanisms of interaction between the drugs. The combination treatment regimen was assessed in vivo using a murine xenograft model. Results: Micromolar bicalutamide or millimolar metformin caused significant dose-dependent reduction in colony formation rates (p<0.001). Combination treatment further significantly reduced colony formation rates (p<0.005). Differing mechanisms of interaction occurred in AR positive and negative cell lines. Following combination treatment LNCaP cells exhibited altered cell proliferation (decreased PCNA) and perturbed cell cycle kinetics (G1/S arrest). PC3 cells showed evidence of enhanced apoptosis (increased BAX, decreased caspase 3, phospho-Akt). Preliminary in vivo results show significantly diminished tumor growth following combination treatment (p<0.0001). Conclusions: Combining bicalutamide and metformin significantly reduces PCa cell colony formation rates further than either monotherapy. In AR positive cells this effect is mediated by reducing cell proliferation rates, whereas in AR negative cells combination treatment promotes apoptosis. This combination drug regimen may potentially improve prostate-cancer specific survival via the direct anti-neoplastic properties outlined. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document