scholarly journals A core-shell Au@Cu2-xSe heterogeneous metal nanocomposite for photoacoustic and computed tomography dual-imaging-guided photothermal boosted chemodynamic therapy

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Le Zhang ◽  
Chunjuan Jiang ◽  
Bing Li ◽  
Zhengwang Liu ◽  
Bingxin Gu ◽  
...  

AbstractChemodynamic therapy (CDT) has aroused extensive attention for conquering cancers because of its high specificity and low invasiveness. Quick generation of hydroxyl radicals (·OH) during CDT could induce more irreparable damage to cancer cells. The generation rate of ·OH could be magnified via the selection of suitable nanocatalysts or under the assistance of exogenous thermal energy from photothermal therapy (PTT). Here, we construct a kind of monodisperse core-shell Au@Cu2-xSe heterogeneous metal nanoparticles (NPs) for PTT boosted CDT synergistic therapy. Due to the localized surface plasmon resonance (LSPR) coupling effect in the core-shell structure, the photothermal conversion efficiency of Au@Cu2-xSe NPs is up to 56.6%. The in situ generated heat from photothermal can then accelerate the Fenton-like reaction at Cu+ sites to produce abundant ·OH, which will induce apoptotic cell death by attacking DNA, contributing to a heat-boosted CDT. Both in vitro and in vivo results showed that after this synergistic therapy, tumors could be remarkably suppressed. Guided by photoacoustic (PA) and computed tomography (CT) imaging, the therapeutic effects were more specified. Our results revealed that PA and CT dual-imaging-guided PTT boosted CDT synergistic therapy based on core-shell Au@Cu2-xSe NPs is an effective cancer treatment strategy. Graphical Abstract

2020 ◽  
Author(s):  
Hao Cheng ◽  
Shufu Chang ◽  
Rende Xu ◽  
Lu Chen ◽  
Xiaoyue Song ◽  
...  

Abstract BackgroundMyocardial infarction (MI) is a major cause of death worldwide. Although percutaneous coronary intervention and coronary artery bypass grafting can prolong life, cardiac damage persists. In particular, cardiomyocytes have no regenerative capacity. Mesenchymal stem cells (MSCs) are attractive candidates for the treatment of MI. The manner by which MSCs exert a beneficial effect upon injured cells is a source of continued study.MethodsAfter the isolation and identification of exosomes from MSCs, the expression of miR-210 was determined by Microarray Chip. Subsequently, gain- and loss-function approaches were conducted to detect the role of exosomes and exosomal-miR-210 in cell proliferation and apoptosis of cardiomyocytes, as well as the MI in vivo. Dual-Luciferase Report Gene System was used to demonstrate the target gene of miR-210. ResultsWe tested the hypothesis that MSC-derived exosomes transfer specific miRNA to protect cardiomyocytes from apoptotic cell death. Interestingly, direct cardiac injection of MSC exosomes reduced infarct size and improved heart function after coronary ligation. In vitro, the MSC exosomes enhanced cardiomyocyte survival to hypoxia. Confirmation of exosome uptake in myocytes was confirmed. Dual luciferase reporter assay implicated miR-210 as a mediator of the therapeutic effect and AIFM3 as a downstream target. Treatment with miR-210 overexpressing MSC exosomes improved myocyte protection to both in vitro and in vivo stress. Furthermore, the endogenous and exogenous miR-210 had the same therapeutic effects. ConclusionThese results demonstrated that the beneficial effects offered by MSC-exosomes transplantation after MI are at least partially because of excreted exosome containing mainly miR-210.


2020 ◽  
Author(s):  
Hao Cheng ◽  
Shufu Chang ◽  
Rende Xu ◽  
Lu Chen ◽  
Xiaoyue Song ◽  
...  

Abstract Background Myocardial infarction (MI) is a major cause of death worldwide. Although percutaneous coronary intervention and coronary artery bypass grafting can prolong life, cardiac damage persists. In particular, cardiomyocytes have no regenerative capacity. Mesenchymal stem cells (MSCs) are attractive candidates for the treatment of MI. The manner by which MSCs exert a beneficial effect upon injured cells is a source of continued study. Methods After the isolation and identification of exosomes from MSCs, the expression of miR-210 was determined by Microarray Chip. Subsequently, gain- and loss-function approaches were conducted to detect the role of exosomes and exosomal-miR-210 in cell proliferation and apoptosis of cardiomyocytes, as well as the MI in vivo . Dual-Luciferase Report Gene System was used to demonstrate the target gene of miR-210. Results We tested the hypothesis that MSC-derived exosomes transfer specific miRNA to protect cardiomyocytes from apoptotic cell death. Interestingly, direct cardiac injection of MSC exosomes reduced infarct size and improved heart function after coronary ligation. In vitro , the MSC exosomes enhanced cardiomyocyte survival to hypoxia. Confirmation of exosome uptake in myocytes was confirmed. Dual luciferase reporter assay implicated miR-210 as a mediator of the therapeutic effect and AIFM3 as a downstream target. Treatment with miR-210 overexpressing MSC exosomes improved myocyte protection to both in vitro and in vivo stress. Furthermore, the endogenous and exogenous miR-210 had the same therapeutic effects. Conclusion These results demonstrated that the beneficial effects offered by MSC-exosomes transplantation after MI are at least partially because of excreted exosome containing mainly miR-210.


1976 ◽  
Vol 35 (01) ◽  
pp. 049-056 ◽  
Author(s):  
Christian R Klimt ◽  
P. H Doub ◽  
Nancy H Doub

SummaryNumerous in vivo and in vitro experiments, investigating the inhibition of platelet aggregation and the prevention of experimentally-induced thrombosis, suggest that anti-platelet drugs, such as aspirin or the combination of aspirin and dipyridamole or sulfinpyrazone, may be effective anti-thrombotic agents in man. Since 1971, seven randomized prospective trials and two case-control studies have been referenced in the literature or are currently being conducted, which evaluate the effects of aspirin, sulfinpyrazone, or dipyridamole in combination with aspirin in the secondary prevention of myocardial infarction. A critical review of these trials indicates a range of evidence from no difference to a favorable trend that antiplatelet drugs may serve as anti-thrombotic agents in man. To date, a definitive answer concerning the therapeutic effects of these drugs in the secondary prevention of coronary heart disease is not available.


1981 ◽  
Vol 45 (02) ◽  
pp. 110-115 ◽  
Author(s):  
György Csákó ◽  
Eva A Suba

SummaryPlatelet aggregations were studied by a turbidimetric method in citrated human platelet-rich plasmas (PRP) in vitro. Human Clq inhibited the aggregations caused by collagens derived from different tissues and species. Clq was needed by weight in comparable quantities to collagen for neutralizing the aggregating effect. The dependence of the inhibitory reaction on the preincubation of platelets with Clq and the differences in the occurrence of aggregating substances in supernatants of PRP triggered with collagen in the presence or absence of Clq, confirmed that Clq exerts its effect by preventing fixation of collagen to platelets. In addition, the high specificity of the inhibitory action of Clq for collagen-induced platelet aggregation was demonstrated by results obtained for testing a variety of aggregating agents in combination with Clq and/or collagen.Since normal concentrations of Clq in the blood are in the range of inhibitory doses of Clq for collagen-induced platelet aggregations in vitro and upon activation of complement Clq is known to dissociate from Cl, it is proposed that Clq may participate in a highly specific manner in regulating platelet reactivity to collagen in vivo.


2020 ◽  
Author(s):  
Shatadru Chakravarty ◽  
Jeremy Hix ◽  
Kaitlyn Wieweora ◽  
Maximilian Volk ◽  
Elizabeth Kenyon ◽  
...  

Here we describe the synthesis, characterization and in vitro and in vivo performance of a series of tantalum oxide (TaOx) based nanoparticles (NPs) for computed tomography (CT). Five distinct versions of 9-12 nm diameter silane coated TaOx nanocrystals (NCs) were fabricated by a sol-gel method with varying degrees of hydrophilicity and with or without fluorescence, with the highest reported Ta content to date (78%). Highly hydrophilic NCs were left bare and were evaluated in vivo in mice for micro-CT of full body vasculature, where following intravenous injection, TaOx NCs demonstrate high CT contrast, circulation in blood for ~ 3 h, and eventual accumulation in RES organs; and following injection locally in the mammary gland, where the full ductal tree structure can be clearly delineated. Partially hydrophilic NCs were encapsulated within mesoporous silica nanoparticles (MSNPs; TaOx@MSNPs) and hydrophobic NCs were encapsulated within poly(lactic-co-glycolic acid) (PLGA; TaOx@PLGA) NPs, serving as potential CT-imagable drug delivery vehicles. Bolus intramuscular injections of TaOx@PLGA NPs and TaOx@MSNPs to mimic the accumulation of NPs at a tumor site produce high signal enhancement in mice. In vitro studies on bare NCs and formuated NPs demonstrate high cytocompatibility and low dissolution of TaOx. This work solidifies that TaOx-based NPs are versatile contrast agents for CT.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Chan-Gi Pack ◽  
Bjorn Paulson ◽  
Yeonhee Shin ◽  
Min Kyo Jung ◽  
Jun Sung Kim ◽  
...  

Controlling the uptake of nanoparticles into cells so as to balance therapeutic effects with toxicity is an essential unsolved problem in the development of nanomedicine technologies. From this point of view, it is useful to use standard nanoparticles to quantitatively evaluate the physical properties of the nanoparticles in solution and in cells, and to analyze the intracellular dynamic motion and distribution of these nanoparticles at a single-particle level. In this study, standard nanoparticles are developed based on a variant silica-based nanoparticle incorporating fluorescein isothiocyanate (FITC) or/and rhodamine B isothiocyanate (RITC) with a variety of accessible diameters and a matching fluorescent cobalt ferrite core-shell structure (Fe2O4/SiO2). The physical and optical properties of the nanoparticles in vitro are fully evaluated with the complementary methods of dynamic light scattering, electron microscopy, and two fluorescence correlation methods. In addition, cell uptake of dual-colored and core/shell nanoparticles via endocytosis in live HeLa cells is detected by fluorescence correlation spectroscopy and electron microscopy, indicating the suitability of the nanoparticles as standards for further studies of intracellular dynamics with multi-modal methods.


2021 ◽  
Vol 64 (1) ◽  
Author(s):  
Senthil Nagarajan ◽  
Jae Kwon Lee

AbstractSesamolin is one of the lignans derived from sesame oil. It has demonstrated significant antioxidant, anti-aging, and anti-mutagenic properties. It also reportedly augments natural killer (NK) cell lysis activity. We previously reported that sesamolin also exerts anticancer effects in vitro and induces enhanced NK cell cytolytic activity against tumor cells. Herein, we aimed to determine the mechanism by which sesamolin prevents and retards tumorigenesis in BALB/c mouse models of leukemia induced by murine (BALB/c) myelomonocytic leukemia WEHI-3B cells. Banded neutrophils, myeloblasts, and monocytic leukemic cells were more abundant in the leukemia model than in normal mice. Sesamolin decreased the number of leukemic cells by almost 60% in the leukemia model mice in vivo; additionally, sesamolin and the positive control drug, vinblastine, similarly hindered neoplastic cell proliferation. Spleen samples were ~ 4.5-fold heavier in leukemic mice than those obtained from normal mice, whereas spleen samples obtained from leukemic mice treated with sesamolin had a similar weight to those of normal mice. Moreover, sesamolin induced a twofold increase in the cytotoxic activity of leukemic mouse NK cells against WEHI-3B cells. These results indicated that sesamolin exerts anti-leukemic effects in vivo.


2021 ◽  
Vol 1 (1) ◽  
pp. 84-95
Author(s):  
Patience O. Obi ◽  
Jennifer E. Kent ◽  
Maya M. Jeyaraman ◽  
Nicole Askin ◽  
Taiana M. Pierdoná ◽  
...  

Asthma is the most common pediatric disease, characterized by chronic airway inflammation and airway hyperresponsiveness. There are several management options for asthma, but no specific treatment. Extracellular vesicles (EVs) are powerful cellular mediators of endocrine, autocrine and paracrine signalling, and can modulate biophysiological function in vitro and in vivo. A thorough investigation of therapeutic effects of EVs in asthma has not been conducted. Therefore, this systematic review is designed to synthesize recent literature on the therapeutic effects of EVs on physiological and biological outcomes of asthma in pre-clinical studies. An electronic search of Web of Science, EMBASE, MEDLINE, and Scopus will be conducted on manuscripts published in the last five years that adhere to standardized guidelines for EV research. Grey literature will also be included. Two reviewers will independently screen the selected studies for title and abstract, and full text based on the eligibility criteria. Data will be extracted, narratively synthesized and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This systematic review will summarize the current knowledge from preclinical studies investigating the therapeutic effects of EVs on asthma. The results will delineate whether EVs can mitigate biological hallmarks of asthma, and if so, describe the underlying mechanisms involved in the process. This insight is crucial for identifying key pathways that can be targeted to alleviate the burden of asthma. The data will also reveal the origin, dosage and biophysical characteristics of beneficial EVs. Overall, our results will provide a scaffold for future intervention and translational studies on asthma treatment.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xuejie Gao ◽  
Bo Li ◽  
Anqi Ye ◽  
Houcai Wang ◽  
Yongsheng Xie ◽  
...  

Abstract Background Multiple myeloma (MM) is a highly aggressive and incurable clonal plasma cell disease with a high rate of recurrence. Thus, the development of new therapies is urgently needed. DCZ0805, a novel compound synthesized from osalmide and pterostilbene, has few observed side effects. In the current study, we intend to investigate the therapeutic effects of DCZ0805 in MM cells and elucidate the molecular mechanism underlying its anti-myeloma activity. Methods We used the Cell Counting Kit-8 assay, immunofluorescence staining, cell cycle assessment, apoptosis assay, western blot analysis, dual-luciferase reporter assay and a tumor xenograft mouse model to investigate the effect of DCZ0805 treatment both in vivo and in vitro. Results The results showed that DCZ0805 treatment arrested the cell at the G0/G1 phase and suppressed MM cells survival by inducing apoptosis via extrinsic and intrinsic pathways. DCZ0805 suppressed the NF-κB signaling pathway activation, which may have contributed to the inhibition of cell proliferation. DCZ0805 treatment remarkably reduced the tumor burden in the immunocompromised xenograft mouse model, with no obvious toxicity observed. Conclusion The findings of this study indicate that DCZ0805 can serve as a novel therapeutic agent for the treatment of MM.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sachiko Iwai ◽  
Hanako O. Ikeda ◽  
Hisashi Mera ◽  
Kohei Nishitani ◽  
Motoo Saito ◽  
...  

AbstractCurrently there is no effective treatment available for osteoarthritis (OA). We have recently developed Kyoto University Substances (KUSs), ATPase inhibitors specific for valosin-containing protein (VCP), as a novel class of medicine for cellular protection. KUSs suppressed intracellular ATP depletion, endoplasmic reticulum (ER) stress, and cell death. In this study, we investigated the effects of KUS121 on chondrocyte cell death. In cultured chondrocytes differentiated from ATDC5 cells, KUS121 suppressed the decline in ATP levels and apoptotic cell death under stress conditions induced by TNFα. KUS121 ameliorated TNFα-induced reduction of gene expression in chondrocytes, such as Sox9 and Col2α. KUS121 also suppressed ER stress and cell death in chondrocytes under tunicamycin load. Furthermore, intraperitoneal administration of KUS121 in vivo suppressed chondrocyte loss and proteoglycan reduction in knee joints of a monosodium iodoacetate-induced OA rat model. Moreover, intra-articular administration of KUS121 more prominently reduced the apoptosis of the affected chondrocytes. These results demonstrate that KUS121 protects chondrocytes from stress-induced cell death in vitro and in vivo, and indicate that KUS121 is a promising novel therapeutic agent to prevent the progression of OA.


Sign in / Sign up

Export Citation Format

Share Document