scholarly journals miR-653-5p suppresses the viability and migration of fibroblast-like synoviocytes by targeting FGF2 and inactivation of the Wnt/beta-catenin pathway

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Peilong Dong ◽  
Xiaobo Tang ◽  
Jian Wang ◽  
Botao Zhu ◽  
Zhiyun Li

Abstract Background Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Several studies reported that fibroblast-like synoviocytes (FLSs) and miRNAs are associated with RA pathogenesis. This study explored the function of miR-653-5p in the regulation of human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) cells. Methods The mRNA and protein levels of genes were measured by RT-qPCR and western blot, respectively. MTT, wound healing, and invasion assays were used to evaluate the viability and metastasis of FLSs. Luciferase reporter and RNA pull-down assays were employed to determine the interaction between miR-653-5p and FGF2. Results RT-qPCR results demonstrated that miR-653-5p expression was decreased and FGF2 level was increased in synovial tissues and FLSs of RA. Moreover, the viability and metastasis of FLSs were accelerated by miR-653-5p addition, which was restrained by miR-653-5p suppression. Furthermore, we demonstrated that levels of Rac1, Cdc42, and RhoA were decreased after miR-653-5p addition. Besides, luciferase reporter and RNA pull-down assays implied that miR-653-5p targeted the 3′-UTR of FGF2. Functional assays showed that FGF2 overexpression neutralized the suppressive effects of miR-653-5p addition on HFLS-RA cell viability, metastasis, and the levels of Rho family proteins. Meanwhile, the levels of β-catenin, cyclin D1, and c-myc were declined by miR-653-5p supplementation, but enhanced by FGF2 addition. Conclusion In sum, we manifested that miR-653-5p restrained HFLS-RA cell viability and metastasis via targeting FGF2 and repressing the Wnt/beta-Catenin pathway.

2020 ◽  
Author(s):  
Hongxing Wang ◽  
Hui Wu ◽  
Kehua Fang ◽  
Xiaotian Chang

Abstract Background: Uridine diphosphate (UDP) is an extracellular nucleotide signaling molecule implicated in diverse biological processes via specific activation of pyrimidinergic receptor P2Y, G Protein-Coupled, 6 (P2Y6). There is very little knowledge about the function and mechanism of UDP in rheumatoid arthritis (RA).Methods: This study used a quasi-targeted liquid chromatography-mass spectrometry (LC-MS) approach to investigate the unique expression of metabolites in RA synovial fluids (SF) (n = 10) with samples from osteoarthritis (OA) as controls (n = 10). RA fibroblast-like synoviocytes (FLSs) were collected from synovial tissues (n = 5) and cultured with UDP or MRS2578, a P2Y6 antagonist, and FLSs from OA were used as controls (n = 5). Rats with collagen-induced arthritis (CIA) were injected with UDP, MRS2578 or both (n = 9 for each group). P2Y6 expression was examined using real-time PCR, Western blotting and immunohistochemistry. Cell proliferation, apoptosis and migration of RA FLSs were measured using CCK-8 assay, real-time cell analysis, flow cytometry, wound healing assay and Transwell assay, respectively. The UDP levels in the culture medium, synovial fluid (n = 36) and peripheral blood (n = 36) of RA and CIA rats were measured using a Transcreener UDP Assay. Levels of proinflammatory cytokines were measured using a flow assay. Interleukin-6 (IL-6) levels were measured using ELISA and flowResults:LC-MS analysis detected significantly increased UDP levels in RA SF compared with OA SF, and the level was positively correlated with anticyclic citrullinated peptide (anti-CCP) and rheumatoid factor (RF) levels in RA. The increased UDP concentration was verified in the blood and synovial fluids of RA patients compared with samples from OA patients and healthy volunteers, respectively. UDP stimulated cell proliferation, migration and IL-6 secretion in RA FLSs and inhibited their apoptosis in culture, and MRS2578 inhibited these effects of UDP. UDP injection accelerated CIA and stimulated IL-6 production rather than other proinflammatory cytokines in the rat model, but simultaneous injection of MRS2578 suppressed these effects and alleviated CIA. P2Y6 expression was increased in RA and CIA synovial tissues.Conclusion: These results suggest that UDP is highly expressed in RA and stimulates RA pathogenesis by promoting P2Y6 activities to increase IL-6 production.


2020 ◽  
Vol 40 (8) ◽  
Author(s):  
Shanshan Yang ◽  
Wei Yin ◽  
Yan Ding ◽  
Fan Liu

Abstract Backgrounds: Rheumatoid arthritis (RA) is a frequent autoimmune disease. Emerging evidence indicated that ZNFX1 antisense RNA1 (ZFAS1) participates in the physiological and pathological processes in RA. However, knowledge of ZFAS1 in RA is limited, the potential work pathway of ZFAS1 needs to be further investigated. Methods: Levels of ZFAS1, microRNA (miR)-2682-5p, and ADAM metallopeptidase with thrombospondin type 1 motif 9 (ADAMTS9) were estimated using quantitative real-time polymerase chain reaction (qRT-PCR) assay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was conducted to explore the ability of cell proliferation in fibroblast-like synoviocytes (FLS-RA). Cell apoptosis was measured via flow cytometry. Also, levels of ADAMTS9, apoptosis-related proteins, cleaved-caspase-3 (active large subunit), and autophagy-related proteins were identified adopting Western blot. Enzyme-linked immunosorbent assay (ELISA) was performed to determine the productions of inflammatory cytokines. Beside, the interrelation between miR-2682-5p and ZFAS1 or ADAMTS9 was verified utilizing dual-luciferase reporter assay. Results: High levels of ZFAS1 and ADAMTS9, and a low level of miR-2682-5p were observed in RA synovial tissues and FLS-RA. Knockdown of ZFAS1 led to the curbs of cell proliferation, inflammation, autophagy, and boost apoptosis in FLS-RA, while these effects were abolished via regaining miR-2682-5p inhibition. Additionally, the influence of miR-2682-5p on cell phenotypes and inflammatory response were eliminated by ADAMTS9 up-regulation in FLS-RA. Mechanically, ZFAS1 exerted its role through miR-2682-5p/ADAMTS9 axis in RA. Conclusion: ZFAS1/miR-2682-5p/ADAMTS9 axis could modulate the cell behaviors, inflammatory response in FLS-RA, might provide a potential therapeutic target for RA treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hongxing Wang ◽  
Hui Wu ◽  
Kehua Fang ◽  
Xiaotian Chang

BACKGROUND: Uridine diphosphate (UDP) is an extracellular nucleotide signaling molecule implicated in diverse biological processes via specific activation of pyrimidinergic receptor P2Y, G Protein-Coupled, 6 (P2Y6). There is very little knowledge about the function and mechanism of UDP in rheumatoid arthritis (RA).METHODS: This study used a quasi-targeted liquid chromatography-mass spectrometry (LC-MS) approach to investigate the unique expression of metabolites in RA synovial fluids (SF) (n = 10) with samples from osteoarthritis (OA) as controls (n = 10). RA fibroblast-like synoviocytes (FLSs) were collected from synovial tissues (n = 5) and cultured with UDP or MRS2578, a P2Y6 antagonist, and FLSs from OA were used as controls (n = 5). Rats with collagen-induced arthritis (CIA) were injected with UDP, MRS2578 or both (n = 9 for each group). P2Y6 expression was examined using real-time PCR, Western blotting and immunohistochemistry. Cell proliferation, apoptosis and migration of RA FLSs were measured using CCK-8 assay, real-time cell analysis, flow cytometry, wound healing assay and Transwell assay, respectively. The UDP levels in the culture medium, synovial fluid (n = 36) and peripheral blood (n = 36) of RA and CIA rats were measured using a Transcreener UDP Assay. Levels of proinflammatory cytokines were measured using a flow assay. Interleukin-6 (IL-6) levels were measured using ELISA and flow.RESULTS: LC-MS analysis detected significantly increased UDP levels in RA SF compared with OA SF, and the level was positively correlated with anticyclic citrullinated peptide (anti-CCP) and rheumatoid factor (RF)levels in RA. The increased UDP concentration was verified in the blood and synovial fluids of RA patients compared with samples from OA patients and healthy volunteers, respectively. UDP stimulated cell proliferation, migration and IL-6 secretion in RA FLSs and inhibited their apoptosis in culture, and MRS2578 inhibited these effects of UDP. UDP injection accelerated CIA and stimulated IL-6 production rather than other proinflammatory cytokines in the rat model, but simultaneous injection of MRS2578 suppressed these effects and alleviated CIA. P2Y6 expression was increased in RA and CIA synovial tissues.CONCLUSION: These results suggest that UDP is highly expressed in RA and stimulates RA pathogenesis by promoting P2Y6 activities to increase IL-6 production.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Jianhong Qiang ◽  
Tingting Lv ◽  
Zhenbiao Wu ◽  
Xichao Yang

Abstract The present study aimed to investigate the regulatory roles of miR-142-3p on the aggressive phenotypes of rheumatoid arthritis (RA) human fibroblast-like synoviocytes (RA-HFLSs), and reveal the potential mechanisms relating with nuclear factor-κB (NF-κB) signaling. miR-142-3p expression was detected in RA synovial tissues and RA-HFLSs by quantitative real-time PCR (qRT-PCR) and Northern blot analysis. RA-HFLSs were transfected with miR-142-3p inhibitor and/or treated with 10 µg/l tumor necrosis factor α (TNF-α). The viability, colony formation, apoptosis, migration, invasion, and the levels of interleukin (IL)-6, and matrix metalloproteinase 3 (MMP-3) were detected. The mRNA expressions of B-cell lymphoma-2 (Bcl-2), Bax, Bad, IL-6, and MMP-3 were detected by qRT-PCR. Moreover, the expression of Bcl-2, IL-1 receptor-associated kinase 1 (IRAK1), Toll-like receptor 4 (TLR4), NF-κB p65, and phosphorylated NF-κB p65 (p-NF-κB p65) were detected by Western blot. The interaction between IRAK1 and miR-142-3p was identified by dual luciferase reporter gene assay. MiR-142-3p was up-regulated in RA synovial tissues and RA-HFLSs. TNF-α activated the aggressive phenotypes of RA-HFLSs, including enhanced proliferation, migration, invasion, and inflammation, and inhibited apoptosis. miR-142-3p inhibitor significantly decreased the cell viability, the number of cell clones, the migration rate, the number of invasive cells, the contents and expression of IL-6 and MMP-3, and increased the apoptosis rate and the expressions of Bax and Bad, and decreased Bcl-2 expression of TNF-α-treated RA-HFLSs. MiR-142-3p inhibitor significantly reversed TNF-α-induced up-regulation of IRAK1, TLR4, and p-NF-κB p65 in TNF-α-treated RA-HFLSs. Besides, IRAK1 was a target of miR-142-3p. The down-regulation of miR-142-3p inhibited the aggressive phenotypes of RA-HFLSs through inhibiting NF-κB signaling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying-Jie Chen ◽  
Yu-Xi Liu ◽  
Jia-Ying Wu ◽  
Chun-Yu Li ◽  
Min-Min Tang ◽  
...  

AbstractFibroblast-like synoviocytes (FLS) play a pathogenic role in rheumatoid arthritis (RA). STAT3 signaling is activated in FLS of RA patients (RA-FLS), which in turn causes RA-FLS hyperproliferation. RL is a traditional remedy for treating inflammatory diseases in China. It comprises Rosae Multiflorae Fructus and Lonicerae Japonicae Flos. A standardized ethanolic extract of RL (RLE) has been shown to exert anti-arthritic effects in collagen-induced arthritis (CIA) rats. Some constituents of RLE were reported to inhibit JAK2/STAT3 signaling in rat FLS. Here, we determined whether RLE inhibits FLS hyperproliferation, and explored the involvement of STAT3 signaling in this inhibition. In joints of CIA rats, RLE increased apoptotic FLS. In IL-6/sIL-6R-stimulated RA-FLS, RLE reduced cell viability and evoked cell apoptosis. In synovial tissues of CIA rats, RLE lowered the protein level of phospho-STAT3. In IL-6/sIL-6R-stimulated RA-FLS, RLE inhibited activation/phosphorylation of STAT3 and JAK2, decreased the nuclear localization of STAT3, and downregulated protein levels of Bcl-2 and Mcl-1. Over-activation of STAT3 diminished RLE’s anti-proliferative effects in IL-6/sIL-6R-stimulated RA-FLS. In summary, RLE inhibits hyperproliferation of FLS in rat and cell models, and suppression of STAT3 signaling contributes to the underlying mechanisms. This study provides further pharmacological groundwork for developing RLE as a modern anti-arthritic drug.


2020 ◽  
Author(s):  
Hongxing Wang ◽  
Hui Wu ◽  
Kehua Fang ◽  
Xiaotian Chang

Abstract Background: Uridine diphosphate (UDP) is an extracellular nucleotide signaling molecule implicated in diverse biological processes via specific activation of the metabotropic pyrimidine and purine nucleotide receptor pyrimidinergic receptor P2Y, G Protein-Coupled, 6 (P2Y6).Methods: This study used a quasi-targeted liquid chromatography-mass spectrometry (LC-MS) approach to investigate the unique expression of metabolites in rheumatoid arthritis (RA) synovial fluid (SF) (n=10) with samples from osteoarthritis (OA) as controls (n=10). RA fibroblast-like synoviocytes (FLSs) were collected from synovial tissues and cultured with UDP or MRS2578, P2Y6 antagonist, and FLSs from OA was used as controls. Rats with collagen-induced arthritis (CIA) were established and injected with UDP or MRS2578 or both. P2Y6 expression was examined using real-time PCR, Western blotting and Immunohistochemistry. Cell proliferation, apoptosis and migration of FLSs were measured using CCK-8 assay, real-time cell analysis, flow cytometry, the wound healing assay and transwell assay. The concentration of UDP in culture medium, synovial fluid and peripheral blood RA and CIA rats was measured using a Transcreener UDP Assay, IL-6 was measured using ELISA and flow assay, and other pro-inflammatory cytokines was measured using Th1/Th2 Subgroup Detection Kit. Results: LC-MS analysis showed that the UDP level is not only higher in RA SF than in OA SF but also positively correlated with anticyclic citrullinated peptide (anti-CCP) and rheumatoid factor (RF) levels in RA. The increased UDP concentration was verified in the plasma and SF samples of RA patients (n=36) and healthy volunteers (n=36), and the levels were significantly correlated with RF and anti-CCP level in the samples. The study also found that UDP stimulated the cell proliferation, migration and interleukin-6 (IL-6) secretion of RA FLSs and inhibited their apoptosis in the culture. The P2Y6 antagonist MRS2578 inhibited this effect of UDP in the culture. UDP injection accelerated the development of collagen-induced arthritis (CIA) in a rat model and stimulated IL-6 production, but simultaneous injection of MRS2578 suppressed these effects and alleviated CIA. P2Y6 expression was increased in RA and CIA synovial tissues and was unaltered by UDP treatment. UDP treatment and P2Y6 activity didn’t change levels of other proinflammatory cytokines in cultured FLSs and CIA rats.Conclusion: These results suggest that UDP is highly expressed in RA and stimulates RA pathogenesis by promoting P2Y6 activities to increase IL-6 production.


2019 ◽  
Vol 9 (6) ◽  
pp. 797-803
Author(s):  
Yan Zhao ◽  
Lanxiu Yang ◽  
Jihong Pan ◽  
Huan Zhang ◽  
Guodong Sun ◽  
...  

Objective: Rheumatoid arthritis (RA) is a common inflammatory disease. Studies showed that keratin type II cuticular Hb4 (KRT84) was highly expressed in the synovial membrane of patients with RA. However, the function and mechanism of KRT84 in RA is still unclear. Methods: In this study, we isolated fibroblast-like synoviocytes (FLS) from the mixed knee joint synovial tissues from five patients with RA and the cells were treated with KRT84 siRNA. After transfection of 24 h and 36 h, the knockdown efficiency and expression of relevant genes was detected by RT-PCR. MTT assay, transwell assay, wound scratch assays, flow cytometric analysis and ELISA were used to assess cell proliferation, invasive and migratory capacity. Results: We found that the invasion and migration of RAFLS were significantly decreased after transfection of KRT84 siRNA. ELISA showed a remarkably decrease in TNF-α secretion after KRT84 knockdown. We also explore stimulatory factors for high expression of KRT84 in RA. The inhibitors of ERK, STAT3 and NF-κ B pathways were employed. Our results showed that the expression of KRT84 in RAFLS was evidently increased after treatment with ERK and STAT3 pathway inhibitor. Conclusions: These results imply a protective role of KRT84 knockdown on RA and lay a foundation for further studies on the pathogenetic mechanisms of RA.


2021 ◽  
Vol 11 (9) ◽  
pp. 1744-1751
Author(s):  
Deqian Meng ◽  
Wenyou Pan ◽  
Ju Li

Accumulating evidence have indicated that MicroRNAs (miRNAs) are key regulators in human rheumatoid arthritis (RA). The aim of this study was to explore the functional roles of miR-16-5p in proliferation, inflammation, and apoptosis of fibroblast-like synoviocytes (FLS). The expression of miR-16-5p and SOCS6 in FLA was detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Luciferase reporter assay was used to verify the direct target of miR-16-5p. Western blot analysis was performed to analysis the levels of SOCS6, Bcl-2, Bax and cleaved caspase 3. miR-16-5p expression was significantly upregulated while SOCS6 level was decreased in RA-FLS compared with normal FLS. In addition, luciferase reporter assay confirmed that SOCS6 was the target of miR-16-5p. Silencing of miR-16-5p inhibited cell proliferation, releases of TNF-α, IL-1β, IL-6 and IL-8, and induced the apoptosis. The effects of miR-16-5p silencing on RA-FLS were reversed by downregulation of SOCS6. In summary, knockdown of miR-16-5p could suppress cell proliferation and accelerate the apoptosis of RA-FLS through targeting SOCS6, which may provide a potential therapeutic target for patients with RA.


2015 ◽  
Vol 35 (3) ◽  
pp. 1125-1136 ◽  
Author(s):  
Chuqi Yan ◽  
Dechao Kong ◽  
Dong Ge ◽  
Yanming Zhang ◽  
Xishan Zhang ◽  
...  

Background/Aims: Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease characterised by prominent synoviocyte hyperplasia and a potential imbalance between the growth and death of fibroblast-like synoviocytes (FLS). Mitomycin C (MMC) has previously been demonstrated to inhibit fibroblast proliferation and to induce fibroblast apoptosis. However, the effects of MMC on the proliferation and apoptosis of human RA FLS and the potential mechanisms underlying its effects remain unknown. Methods: Cell viability was determined using the Cell Counting Kit-8 assay. Apoptotic cell death was analysed via Annexin V-FITC/PI double staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labelling. The production of intracellular reactive oxygen species (ROS) was assessed via flow cytometry, and the changes in mitochondrial membrane potential (ΔΨm) were visualized based on JC-1 staining via fluorescence microscopy. The expression of apoptosis-related proteins was determined via Western blot. Results: Treatment with MMC significantly reduced cell viability and induced apoptosis in RA FLS. Furthermore, MMC exposure was found to stimulate the production of ROS and to disrupt the ΔΨm compared to the control treatment. Moreover, MMC increased the release of mitochondrial cytochrome c, the ratio of Bax/Bcl-2, the activation of caspase-9 and caspase-3, and the subsequent cleavage of poly(ADP-ribose) polymerase. Conclusion: Our findings suggest that MMC inhibits cell proliferation and induces apoptosis in RA FLS, and the mechanism underlying this MMC-induced apoptosis may involve a mitochondrial signalling pathway.


2020 ◽  
Author(s):  
fujuan qiu ◽  
Chen Yong ◽  
Qiu Fujuan ◽  
Zhao Xiaofeng ◽  
Xiao Changhong

Abstract Background To determine whether any differences of AIM2 inflammasome expression levels between rheumatoid arthritis (RA) and osteoarthritis (OA) and investigate the effects of AIM2 when transferred into RA fibroblast-like synoviocytes (RA-FLS).Methods Serum AIM2 levels between OA and RA patients were compared by ELISA. Different expression levels of AIM2, ASC, Caspase-1 and IL-1β between RA and OA synovium were semi-quantified by RT-qPCR and immunohistochemical (IHC) staining. IHC staining were recorded by H scores, and determine the correlation with ESR and CRP levels of RA patients. SiRNA AIM2 was transferred to RA-FLS and observe its effects on proliferation and migration by MTT assay and transwell test respectively.Results In RA sera, no significant difference was observed between OA and RA patients. However, in affected knee synovium, AIM2, ASC, Caspase-1 and IL-1β were expressed higher in RA than that of OA. Plus, H score of AIM2, ASC, and IL-1β were positively correlated to ESR and CRP levels in RA patients. After transferred AIM2 siRNA to FLS and incubation for 48 hours, the proliferation of FLS were significantly inhibited, and the apoptosis rate were significantly increased compared to FLS in control group. However, no effect on migration was detected.Conclusions AIM2 participated in the proliferation of FLS, and might be a potential target for therapy.


Sign in / Sign up

Export Citation Format

Share Document