scholarly journals Perillaldehyde improves cognitive function in vivo and in vitro by inhibiting neuronal damage via blocking TRPM2/NMDAR pathway

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yue Qiu ◽  
Xian-jun Xue ◽  
Geng Liu ◽  
Miao-miao Shen ◽  
Chun-yan Chao ◽  
...  

Abstract Background Vascular cognitive dysfunction in patients with vascular dementia (VD) is a kind of severe cognitive dysfunction syndrome caused by cerebrovascular diseases. At present, effective drugs to improve the cognitive function of VD patients still need to be explored. Transient Receptor Potential Melastatin 2 (TRPM2) channel is a nonspecific cation channel that plays a key role in the toxic death of neurons. Perillaldehyde (PAE) has the protective effect of epilepsy and insomnia and other central nervous system diseases. The aim of this study is to explore whether PAE improves cognitive function in VD rats and to investigate the potential mechanisms in vivo and vitro. Methods VD rats were induced by bilateral common carotid arteries occlusion (2-vessel occlusion [2VO]) and treated with PAE for 4 weeks. The neuroprotective effects of PAE was subsequently assessed by the Morris water maze, hematoxylin–eosin (HE) staining, Golgi staining, electron microscopy, Neuron-specific nuclear protein (Neu N) staining, and TdT-mediated dUTP nick end labeling (TUNEL) staining. After primary hippocampal neurons were isolated, cell viability was detected by MTT assay and intracellular Ca2+ concentration was detected by calcium imaging assay. The content of Nitriteoxide (NO), Malondialdehyde (MDA) and Superoxide dismutase (SOD) activity in serum of rats were observed by Enzyme Linked Immunosorbent Assay (ELISA). Immunohistochemistry, Western blot, and Confocal laser scanning were used to detect the expression levels of N-methyl-d-asprtate receptor-2B (NR2B) and TRPM2. Results The results showed that PAE can improve the number and activity of neurons, increase the length and number of dendrites in hippocampus, decrease the Vv value and PE value of neuronal nucleus and mitochondrial structure significantly, increase the s value and L value in nucleus structure, decrease the s value and L value in mitochondrial structure, and improve the learning and memory ability of rats significantly. And PAE can strengthen the ability of antioxidant stress confirmed by increasing the activity of SOD and reducing the production of MDA. The results of western blot, immunohistochemistry and immunofluorescence showed that PAE could reduce the level of TRPM2 and increase the expression of NR2B. Conclusions Taken together, our findings provide evidence that the neuroprotective effects of PAE in VD rats maybe through TRPM2 inhibition and subsequent activation of NMDAR signaling pathway.

2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Peng Wang ◽  
Qian Luo ◽  
Hui Qiao ◽  
Hui Ding ◽  
Yonggang Cao ◽  
...  

Chronic alcohol consumption causes hippocampal neuronal impairment, which is associated with oxidative stress and apoptosis. Carvacrol is a major monoterpenic phenol found in essential oils from the family Labiatae and has antioxidative stress and antiapoptosis actions. However, the protective effects of carvacrol in ethanol-induced hippocampal neuronal impairment have not been fully understood. We explored the neuroprotective effects of carvacrol in vivo and in vitro. Male C57BL/6 mice were exposed to 35% ethanol for 4 weeks to establish ethanol model in vivo, and hippocampal neuron injury was simulated by 200 mM ethanol in vitro. Morris water maze test was performed to evaluate the cognitive dysfunction. The oxidative stress injury of hippocampal neurons was evaluated by measuring the levels of oxidative stress biomarkers. Histopathological examinations and western blot were performed to evaluate the apoptosis of neurons. The results showed that carvacrol attenuates the cognitive dysfunction, oxidative stress, and apoptosis of the mice treated with ethanol and decreases hippocampal neurons apoptosis induced by ethanol in vitro. In addition, western blot analysis revealed that carvacrol modulates the protein expression of Bcl-2, Bax, caspase-3, and p-ERK, without influence of p-JNK and p-p38. Our results suggest that carvacrol alleviates ethanol-mediated hippocampal neuronal impairment by antioxidative and antiapoptotic effects.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xueying Li ◽  
Jiahe Lin ◽  
Yingjie Hua ◽  
Jiaoni Gong ◽  
Siqi Ding ◽  
...  

Background: Epilepsy is a common neurological disease, and neuroinflammation is one of the main contributors to epileptogenesis. Pyroptosis is a type of pro-inflammatory cell death that is related to epilepsy. Agmatine, has anti-inflammatory properties and exerts neuroprotective effects against seizures. Our study investigated the effect of agmatine on the core pyroptosis protein GSDMD in the context of epilepsy.Methods: A chronic epilepsy model and BV2 microglial cellular inflammation model were established by pentylenetetrazole (PTZ)-induced kindling or lipopolysaccharide (LPS) stimulation. H&E and Nissl staining were used to evaluate hippocampal neuronal damage. The expression of pyroptosis and inflammasome factors was examined by western blotting, quantitative real-time PCR, immunofluorescence and enzyme-linked immunosorbent assay (ELISA).Results: Agmatine disrupted the kindling acquisition process, which decreased seizure scores and the incidence of full kindling and blocked hippocampal neuronal damage. In addition, agmatine increased BV2 microglial cell survival in vitro and alleviated seizures in vivo by suppressing the levels of PTZ-induced pyroptosis. Finally, the expression of TLR4, MYD88, phospho-IκBα, phospho-NF-κB and the NLRP3 inflammasome was significantly upregulated in LPS-induced BV2 microglial cells, while agmatine suppressed the expression of these proteins.Conclusions: Our results indicate that agmatine affects epileptogenesis and exerts neuroprotective effects by inhibiting neuroinflammation, GSDMD activation, and pyroptosis. The inhibitory effect of agmatine on pyroptosis was mediated by the suppression of the TLR4/MYD88/NF-κB/NLRP3 inflammasome pathway. Therefore, agmatine may be a potential treatment option for epilepsy.


2020 ◽  
Vol 19 (17) ◽  
pp. 2108-2119
Author(s):  
Yang Jin ◽  
Li Lv ◽  
Shu-Xiang Ning ◽  
Ji-Hong Wang ◽  
Rong Xiao

Background: Laryngeal Squamous Cell Carcinoma (LSCC) is a malignant epithelial tumor with poor prognosis and its incidence rate increased recently. rLj-RGD3, a recombinant protein cloned from the buccal gland of Lampetra japonica, contains three RGD motifs that could bind to integrins on the tumor cells. Methods: MTT assay was used to detect the inhibitory rate of viability. Giemsa’s staining assay was used to observe the morphological changes of cells. Hoechst 33258 and TUNEL staining assay, DNA ladder assay were used to examine the apoptotic. Western blot assay was applied to detect the change of the integrin signal pathway. Wound-healing assay, migration, and invasion assay were used to detect the mobility of Hep2 cells. H&E staining assay was used to show the arrangement of the Hep2 cells in the solid tumor tissues. Results: In the present study, rLj-RGD3 was shown to inhibit the viability of LSCC Hep2 cells in vitro by inducing apoptosis with an IC50 of 1.23µM. Western blot showed that the apoptosis of Hep2 cells induced by rLj- RGD3 was dependent on the integrin-FAK-Akt pathway. Wound healing, transwells, and western blot assays in vitro showed that rLj-RGD3 suppressed the migration and invasion of Hep2 cells by integrin-FAKpaxillin/ PLC pathway which could also affect the cytoskeleton arrangement in Hep2 cells. In in vivo studies, rLj-RGD3 inhibited the growth, tumor volume, and weight, as well as disturbed the tissue structure of the solid tumors in xenograft models of BALB/c nude mice without reducing their body weights. Conclusion: hese results suggested that rLj-RGD3 is an effective and safe suppressor on the growth and metastasis of LSCC Hep2 cells from both in vitro and in vivo experiments. rLj-RGD3 might be expected to become a novel anti-tumor drug to treat LSCC patients in the near future.


2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Jingli Qian ◽  
Guoping Li ◽  
Xiaosheng Jin ◽  
Chunfang Ma ◽  
Wanru Cai ◽  
...  

Abstract Objective: Our aim was to investigate the effect of emodin on intestinal and lung injury induced by acute intestinal injury in rats and explore potential molecular mechanisms. Methods: Healthy male Sprague–Dawley (SD) rats were randomly divided into five groups (n=10, each group): normal group; saline group; acute intestinal injury model group; model + emodin group; model+NF-κB inhibitor pynolidine dithiocarbamate (PDTC) group. Histopathological changes in intestine/lung tissues were observed by Hematoxylin and Eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) staining. Serum IKBα, p-IKBα, surfactant protein-A (SP-A) and toll-like receptor 4 (TLR4) levels were examined using enzyme-linked immunosorbent assay (ELISA). RT-qPCR was performed to detect the mRNA expression levels of IKBα, SP-A and TLR4 in intestine/lung tissues. Furthermore, the protein expression levels of IKBα, p-IKBα, SP-A and TLR4 were detected by Western blot. Results: The pathological injury of intestinal/lung tissues was remarkedly ameliorated in models treated with emodin and PDTC. Furthermore, the intestinal/lung injury scores were significantly decreased after emodin or PDTC treatment. TUNEL results showed that both emodin and PDTC treatment distinctly attenuated the apoptosis of intestine/lung tissues induced by acute intestinal injury. At the mRNA level, emodin significantly increased the expression levels of SP-A and decreased the expression levels of IKBα and TLR4 in intestine/lung tissues. According to ELISA and Western blot, emodin remarkedly inhibited the expression of p-IKBα protein and elevated the expression of SP-A and TLR4 in serum and intestine/lung tissues induced by acute intestinal injury. Conclusion: Our findings suggested that emodin could protect against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 108 ◽  
Author(s):  
Muhammad Imran ◽  
Lina Tariq Al Kury ◽  
Humaira Nadeem ◽  
Fawad Ali Shah ◽  
Muzaffar Abbas ◽  
...  

Oxidative stress-induced neuroinflammation is the prominent feature of neurodegenerative disorders, and is characterized by a gradual decline of structure and function of neurons. Many biochemical events emerge thanks to the result of this neurodegeneration, and ultimately provoke neuroinflammation, activation of microglia, and oxidative stress, leading to neuronal death. This cascade not only explains the complexity of events taking place across different stages, but also depicts the need for more effective therapeutic agents. The present study was designed to investigate the neuroprotective effects of newly synthesized benzimidazole containing acetamide derivatives, 3a (2-(4-methoxyanilino)-N-[1-(4-methylbenzene-1-sulfonyl)-1H-benzimidazol-2-yl] acetamide) and 3b (2-(Dodecylamino)-N-[1-(4-methylbenzene-1-sulfonyl)-1H-benzimidazol-2-yl] acetamide) against ethanol-induced neurodegeneration in the rat model. Both derivatives were characterized spectroscopically by proton NMR (1H-NMR) and carbon-13 NMR (13C-NMR) and evaluated for neuroprotective potential using different pharmacological approaches. In vivo experiments demonstrated that ethanol triggered neurodegeneration characterized by impaired antioxidant enzymes and elevated oxidative stress. Furthermore, ethanol administration induced neuroinflammation, as demonstrated by elevated expression of tumor necrotic factor (TNF-α), nuclear factor κB (NF-κB), cyclooxygenase-2 (COX2), and ionized calcium-binding adapter molecule-1 (Iba-1), which was further validated by enzyme-linked immunosorbent assay (ELISA). Treatment with 3a and 3b ameliorated the ethanol-induced oxidative stress, neuroinflammation, and memory impairment. The affinity of synthesized derivatives towards various receptors involved in neurodegeneration was assessed through docking analysis. The versatile nature of benzimidazole nucleus and its affinity toward several receptors suggested that it could be a multistep targeting neuroprotectant. As repetitive clinical trials of neuroprotectants targeting a single step of the pathological process have failed previously, our results suggested that a neuroprotective strategy of acting at different stages may be more advantageous to intervene in the vicious cycles of neuroinflammation.


2015 ◽  
Vol 95 (7) ◽  
pp. 1046-1060 ◽  
Author(s):  
Cristy Phillips ◽  
Mehmet Akif Baktir ◽  
Devsmita Das ◽  
Bill Lin ◽  
Ahmad Salehi

Alzheimer disease (AD) is a primary cause of cognitive dysfunction in the elderly population worldwide. Despite the allocation of enormous amounts of funding and resources to studying this brain disorder, there are no effective pharmacological treatments for reducing the severity of pathology and restoring cognitive function in affected people. Recent reports on the failure of multiple clinical trials for AD have highlighted the need to diversify further the search for new therapeutic strategies for cognitive dysfunction. Thus, studies detailing the neuroprotective effects of physical activity (PA) on the brain in AD were reviewed, and mechanisms by which PA might mitigate AD-related cognitive decline were explored. A MEDLINE database search was used to generate a list of studies conducted between January 2007 and September 2014 (n=394). These studies, along with key references, were screened to identify those that assessed the effects of PA on AD-related biomarkers and cognitive function. The search was not limited on the basis of intensity, frequency, duration, or mode of activity. However, studies in which PA was combined with another intervention (eg, diet, pharmacotherapeutics, ovariectomy, cognitive training, behavioral therapy), and studies not written in English were excluded. Thirty-eight animal and human studies met entry criteria. Most of the studies suggested that PA attenuates neuropathology and positively affects cognitive function in AD. Although the literature lacked sufficient evidence to support precise PA guidelines, convergent evidence does suggest that the incorporation of regular PA into daily routines mitigates AD-related symptoms, especially when deployed earlier in the disease process. Here the protocols used to alter the progression of AD-related neuropathology and cognitive decline are highlighted, and the implications for physical therapist practice are discussed.


2021 ◽  
Vol 22 (19) ◽  
pp. 10196
Author(s):  
Sven Schnichels ◽  
Maximilian Schultheiss ◽  
Patricia Klemm ◽  
Matthias Blak ◽  
Thoralf Herrmann ◽  
...  

The retina is a complex neurological tissue and is extremely sensitive to an insufficient supply of oxygen. Hypoxia plays a major role in several retinal diseases, and often results in the loss of cells that are essential for vision. Cyclosporine A (CsA) is a widely used immunosuppressive drug. Furthermore, treatment with CsA has neuroprotective effects in several neurologic disorders. No data are currently available on the tolerated concentration of CsA when applied to the retina. To reveal the most effective dose, retinal explants from rat eyes were exposed to different CsA concentrations (1–9 µg/mL). Immunohistochemistry with brain-specific homeobox/POU domain protein 3a (Brn3a) and TUNEL staining was performed to determine the percentage of total and apoptotic retinal ganglion cells (RGCs), as well as the responses of micro- and macroglial cells. Furthermore, optical coherence tomography (OCT) scans were performed to measure the changes in retinal thickness, and recordings with multielectrode array (MEA) were performed to evaluate spontaneous RGC spiking. To examine the neuroprotective effects, retinas were subjected to a hypoxic insult by placing them in a nitrogen-streamed hypoxic chamber prior to CsA treatment. In the biocompatibility tests, the different CsA concentrations had no negative effect on RGCs and microglia. Neuroprotective effects after a hypoxic insult on RGCs was demonstrated at a concentration of 9 µg/mL CsA. CsA counteracted the hypoxia-induced loss of RGCs, reduced the percentage of TUNEL+ RGCs, and prevented a decrease in retinal thickness. Taken together, the results of this study suggest that CsA can effectively protect RGCs from hypoxia, and the administered concentrations were well tolerated. Further in vivo studies are needed to determine whether local CsA treatment may be a suitable option for hypoxic retinal diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Zhao Jin ◽  
Zongze Zhang ◽  
Jianjuan Ke ◽  
Yanlin Wang ◽  
Huisheng Wu

Irisin, which can be released in the hippocampus after physical exercise, is demonstrated to have beneficial effects on neurovascular diseases. This study investigated the impact of exercise linked-irisin on mortality and cognition in a mice model of cerebral ischemia and further explored its underlying mechanism. The cerebrospinal concentrations of irisin and klotho from ischemic stroke patients were measured with an enzyme-linked immunosorbent assay (ELISA). The cognitive function of mice was evaluated by a series of behavioural experiments. The expressions of klotho, MnSOD, and FOXO3a in the hippocampus of mice were detected by Western blot. Superoxide production in the brain tissue of mice was evaluated with the dihydroethidium (DHE) dying. The results demonstrated that stroke patients showed a positive correlation between their CSF irisin concentration and klotho concentration. In addition, when mice subjected to cerebral ischemia, their cognitive function was impaired, the protein expressions of klotho, MnSOD, and FOXO3a downregulated, and the production of reactive oxygen species (ROS) increased compared with the sham group. After pretreatment with exogenous irisin, improved cognitive impairment, upregulated protein expressions of klotho, MnSOD, and FOXO3a, and reduced ROS generation were observed in mice with MCAO. However, the neuroprotective effects of irisin compromised with the evidence of severe cognitive impairment, decreased protein expressions of MnSOD and FOXO3a, and increased ROS production in klotho knockout mice. Thus, our results indicated that exercise-linked irisin could prevent mortality and improve cognitive impairment after cerebral ischemia by regulating klotho expression.


2010 ◽  
Vol 68 (4) ◽  
pp. 579-585 ◽  
Author(s):  
Adriana da Rocha Tomé ◽  
Chistiane Mendes Feitosa ◽  
Rivelilson Mendes de Freitas

The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA) in rats, against the neuronal damage and memory deficit caused by seizures. Wistar rats were treated with 0.9% saline (i.p., control group), ascorbic acid (500 mg/kg, i.p., AA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of ascorbic acid (500 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of ascorbic acid (AA plus pilocarpine group). After the treatments all groups were observed for 24 h. Pilocarpine group presented seizures which progressed to status epilepticus in 75% of the animals. Pretreatment with AA led to a reduction of 50% of this rate. Results showed that pretreatment with AA did not alter reference memory when compared to a control group. In the working memory task, we observed a significant day's effect with important differences between control, pilocarpine and AA plus pilocarpine groups. Pilocarpine and AA plus pilocarpine groups had 81 and 16% of animals with brain injury, respectively. In the hippocampus of pilocarpine animals, it was detected an injury of 60%. As for the animals tested with AA plus pilocarpine, the hippocampal region of the group had a reduction of 43% in hippocampal lesion. Our findings suggest that seizures caused cognitive dysfunction and neuronal damage that might be related, at least in part, to the neurological problems presented by epileptic patients. AA can reverse cognitive dysfunction observed in rats with seizures as well as decrease neuronal injury in rat hippocampus.


Author(s):  
YOSHUA BAKTIAR ◽  
RATNA FARIDA SOENARTO ◽  
ANAS ALATAS ◽  
AINO NINDYA AUERKARI

Objective: Postoperative cognitive dysfunction (POCD) can feature a wide spectrum of clinical symptoms, from asymptomatic to debilitating dementia, that lead to increased dependence, lower quality of life, morbidity, and mortality. Protein S100B is a direct marker for neuronal cell damage. We aimed to evaluate S100B as a biomarker for predicting POCD following open-heart surgery. Methods: This was an observational-analytic study to assess changes of the S100B level following open-heart surgery in Cipto Mangunkusumo Hospital, Jakarta. All subjects underwent cognitive function evaluations that consisted of six psychometric tests on the day prior to surgery and five days after surgery. Cognitive dysfunction was determined if there was a>20% cognitive score drop from baseline values in at least two tests. Blood samples for S100B were obtained (1) before the induction of anesthesia and (2) six hours after surgery. Samples were analyzed using enzyme-linked immunosorbent assay for S100B. All data were analyzed using SPSS 20. Results: Among the 55 subjects analyzed, 31 (56.4%) were found to have a decline in cognitive function. There were no differences in baseline characteristics, comorbidities, and perioperative data. Oxygen contents also did not show significant differences at any time. The S100B levels in all subjects increased. This increase was>1.5x higher in subjects with POCD compared to those without POCD (2.15[0.22–60.03] vs. 1.33[0.15–19.77] ng/ml, p = 0.16). However, this difference was not statistically significant. Conclusion: This study showed that serum S100B is higher in POCD patients and has the potential to be a biomarker for predicting POCD after open-heart surgery.


Sign in / Sign up

Export Citation Format

Share Document