scholarly journals Emodin protects against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway

2020 ◽  
Vol 40 (9) ◽  
Author(s):  
Jingli Qian ◽  
Guoping Li ◽  
Xiaosheng Jin ◽  
Chunfang Ma ◽  
Wanru Cai ◽  
...  

Abstract Objective: Our aim was to investigate the effect of emodin on intestinal and lung injury induced by acute intestinal injury in rats and explore potential molecular mechanisms. Methods: Healthy male Sprague–Dawley (SD) rats were randomly divided into five groups (n=10, each group): normal group; saline group; acute intestinal injury model group; model + emodin group; model+NF-κB inhibitor pynolidine dithiocarbamate (PDTC) group. Histopathological changes in intestine/lung tissues were observed by Hematoxylin and Eosin (H&E) and terminal deoxynucleotidyl transferase biotin-dUTP nick-end labeling (TUNEL) staining. Serum IKBα, p-IKBα, surfactant protein-A (SP-A) and toll-like receptor 4 (TLR4) levels were examined using enzyme-linked immunosorbent assay (ELISA). RT-qPCR was performed to detect the mRNA expression levels of IKBα, SP-A and TLR4 in intestine/lung tissues. Furthermore, the protein expression levels of IKBα, p-IKBα, SP-A and TLR4 were detected by Western blot. Results: The pathological injury of intestinal/lung tissues was remarkedly ameliorated in models treated with emodin and PDTC. Furthermore, the intestinal/lung injury scores were significantly decreased after emodin or PDTC treatment. TUNEL results showed that both emodin and PDTC treatment distinctly attenuated the apoptosis of intestine/lung tissues induced by acute intestinal injury. At the mRNA level, emodin significantly increased the expression levels of SP-A and decreased the expression levels of IKBα and TLR4 in intestine/lung tissues. According to ELISA and Western blot, emodin remarkedly inhibited the expression of p-IKBα protein and elevated the expression of SP-A and TLR4 in serum and intestine/lung tissues induced by acute intestinal injury. Conclusion: Our findings suggested that emodin could protect against intestinal and lung injury induced by acute intestinal injury by modulating SP-A and TLR4/NF-κB pathway.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yunen Liu ◽  
Changci Tong ◽  
Ying Xu ◽  
Peifang Cong ◽  
Ying Liu ◽  
...  

Although CD28 is associated with the expression of inflammatory mediators, apoptosis-related protein, immunosuppression, and tumorigenesis, the effects of CD28 deficiency on blast exposure-induced lung injury have not been investigated. In this study, we have explored the effects of CD28 on blast exposure-induced lung injury and studied its potential molecular mechanisms. A mouse model of blast exposure-induced acute lung injury was established. Sixty C57BL/6 wild-type (WT) and CD28 knockout (CD28-/-) mice were randomly divided into control or model groups. Lung tissue samples were collected 24 h and 48 h after blast injury. Histopathological changes and the expressions of inflammatory-related proteins were detected by hematoxylin-eosin, immunohistochemistry, and immunofluorescence staining. Apoptosis and oxidative stress were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and reactive oxygen species (ROS). Inflammation, apoptosis, oxidative stress, and related pathway protein expression were studied by western blotting. In addition, the levels of CD3 and CD28 proteins were measured by flow cytometry. In the current study, we found that CD28 deficiency significantly inhibited blast exposure-induced increases in the lung weight/body weight ratio and wet weight/dry weight ratio; decreased the infiltration of CD44+ leukocytes, CD163+ macrophages, and CD3+ T cells into the lungs; reduced the expressions of proinflammatory cytokines including IL-1β, TNF-α, and IL-6; and markedly increased IL-10 expression. CD28 deficiency also significantly attenuated blast exposure-induced ROS, MDA5, and IREα expressions; increased SOD-1 expression; lowered the number of apoptotic cells and Bax, Caspase-3, and active Caspase-8 expressions; and increased Bcl-2 expression. Additionally, CD28 deficiency significantly ameliorated blast exposure-induced increases of p-PI3K and p-Akt and ameliorated the decrease in the p-FoxO1 expression. Our results suggest that CD28 deficiency has a protective effect on blast exposure-induced lung injury, which might be associated with the PI3K/Akt/FoxO1 signaling pathway.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Wei Gao ◽  
Ying Zhang

Abstract Background Inflammation plays an important role in the development of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The long non-coding RNA (lncRNA) MINCR is closely related to inflammation injury. This study was performed to explore the protective effects and mechanisms of MINCR in lipopolysaccharide (LPS)-induced lung injury and inflammation. Methods The expression levels of MINCR and miR-146b-5p in lung tissue status were detected by using quantitative real-time polymerase chain reaction (qRT-PCR), hematoxylin and eosin staining, immunohistochemical staining, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Enzyme-linked immunosorbent assay and Western blotting analysis were used to detect the expression of inflammatory factors such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in lung tissue. The relationship between MINCR, miR-146b-5p, and TRAF6 was explored using bioinformatics analysis and luciferase assay. Results The expression levels of MINCR were increased in a mouse model of LPS-induced ALI and small airway epithelial cells (SAECs). shMINCR resulted in increased cell viability and decreased apoptosis, which protected against LPS-induced cell damage. shMINCR can inhibit the formation of neutrophil extracellular traps, neutrophil numbers, myeloperoxidase activity, and the production of inflammatory cytokines IL-6, IL-1β, and TNF-α induced by LPS. The silencing of miR-146b-5p reversed the effects of MINCR on LPS-induced lung damage. Sh-MINCR decreased the expression levels of TRAF6 and p-P65 in LPS-induced SAECs and lung tissues. Co-transfection of sh-MINCR with miR-146b-5p inhibitor reversed the effect of sh-MINCR on the expression of TRAF6 and p-P65. Conclusions MINCR may induce alveolar epithelial cell injury and inflammation and aggravate the progression of ALI/ARDS through miR-146b-5p and TRAF6/NF-κB pathways, which would provide a promising target for the treatment of ALI/ARDS.


2016 ◽  
Vol 38 (4) ◽  
pp. 1365-1375 ◽  
Author(s):  
Jie Jian ◽  
Feifei Xuan ◽  
Feizhang Qin ◽  
Renbin Huang

Background/Aims: Previous studies have demonstrated that Bauhinia championii flavone (BCF) exhibits anti-oxidative, anti-hypoxic and anti-stress properties. This study was designed to investigate whether BCF has a cardioprotective effect against myocardial ischemia/reperfusion (I/R) injuries in rats and to shed light on its possible mechanism. Methods: The model of I/R was established by ligating the left anterior descending coronary artery for 30 min, then reperfusing for 180 min. Hemodynamic changes were continuously monitored. The content of malondialdehyde (MDA) as well as the lactate dehydrogenase (LDH), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were assessed. The release of interleukin-6 (IL-6) was measured by enzyme-linked immunosorbent assay (ELISA). Apoptosis of cardiomyocytes was determined by caspase-3 activity and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. The expression of TLR4, NF-κBp65, Bcl-2 and Bax were detected by western blotting. Results: Pretreatment with BCF significantly reduced the serum levels of LDH, MDA and IL-6, but increased the activities of SOD and GSH-Px. It also attenuated myocardial infarct size, reduced the apoptosis rate and preserved cardiac function. Furthermore, BCF inhibited caspase-3 activity and the expression of TLR4, phosphorylated NF-κBp65 and Bax, but enhanced the expression of Bcl-2. Conclusion: These results provide substantial evidence that BCF exerts a protective effect on myocardial I/R injury, which may be attributed to attenuating lipid peroxidation, the inflammatory response and apoptosis.


2021 ◽  
Author(s):  
Runhong Yu ◽  
Shiwei Yang ◽  
Yufeng Liu ◽  
Zunmin Zhu

Abstract Purpose: Study was by intention to screen serum autoantibodies that may contribute to the early detection of B-cell acute lymphoblastic leukemia (B-ALL) in children.Patients and methods: The total protein from three pooled B-ALL cell lines(NALM-6, REH and BALL-1 cells) was separated using two-dimensional gel electrophoresis(2-DE), which was followed by Western blot by mixed serum from B-ALL patients (n=20) or healthy children(n=20). We obtained and analyzed the images of 2-D gel and Western blot by PDQuest software,and then identify the spots of immune responses in B-ALL samples compared with those in control samples.The proteins from spots were identified using mass spectrometry (MS). The autoantibodies against α-enolase and voltage-dependent anion-selective channel protein 1(VDAC1) were further validated on the use of enzyme-linked immunosorbent assay(ELISA). The protein expression levels of the candidate antigens α-enolase and VDAC1 in B-ALL were thoroughly studied by immunohistochemical analysis.Results: Six protein dots were identified with MS as Aconitase,apoptosis-inducing factor(AIF),dihydrolipoamide dehydrogenase(DLD), α-enolase,medium-chain acyl-CoA dehydrogenase(MCAD) and VDAC 1.The frequencies of autoantibodies against α-enolase and VDAC1 in children with B-ALL were 27% and 23%, respectively, which were significantly higher than those in normal controls(4% and 0). Immunohistochemical analysis showed the expression of α-enolase and VDAC1 was positive in 95% and 85% of B-ALL patients, respectively, but negative expression levels were showed in the control group. Conclusion: This study incidates that α-enolase and VDAC1 may be the antigen associated with B-ALL .α-enolase and VDAC1 autoantibodies may develop into potential serological markers of B-ALL in children.Other proteins also need to be confirmed in a large number of serum samples.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Aiming Wu ◽  
Jianying Zhai ◽  
Dongmei Zhang ◽  
Lixia Lou ◽  
Haiyan Zhu ◽  
...  

Aim. To determine the effect of a Chinese herbal compound named Wenxin Granule on ventricular remodeling and myocardial apoptosis in rats with myocardial infarction (MI).Methods. Male Sprague-Dawley (SD) rats were randomly divided into four groups: the control group, the model group, the metoprolol group, and the Wenxin Granule group (WXKL group) with sample size (n) of 7 rats in each group. An MI model was established in all rats by occlusion of the left anterior descending coronary artery (the control group was without occlusion). Wenxin Granule (1.35 g/kg/day), metoprolol (12 mg/kg/day), and distilled water (5 mL/kg/day for the control and model groups) were administered orally for 4 weeks. Ultrasonic echocardiography was used to examine cardiac structural and functional parameters. Myocardial histopathological changes were observed using haematoxylin and eosin (H&E) dyeing. Myocardial apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Serum angiotensin II (Ang II) concentration was measured using the enzyme-linked immunosorbent assay (ELISA).Results. It was found that Wenxin Granule could partially reverse ventricular remodeling, improve heart function, alleviate the histopathological damage, inhibit myocardial apoptosis, and reduce Ang II concentration in rats with MI.Conclusions. The results of the current study suggest that Wenxin Granule may be a potential alternative and complementary medicine for the treatment of MI.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Liang Yue ◽  
Lei Zhao ◽  
Haixiao Liu ◽  
Xia Li ◽  
Bodong Wang ◽  
...  

Glutamate- (Glu-) induced excitotoxicity plays a critical role in stroke. This study aimed to investigate the effects of APN on Glu-induced injury in HT22 neurons. HT22 neurons were treated with Glu in the absence or the presence of an APN peptide. Cell viability was assessed using the MTT assay, while cell apoptosis was evaluated using TUNEL staining. Levels of LDH, MDA, SOD, and GSH-Px were detected using the respective kits, and ROS levels were detected using dichlorofluorescein diacetate. Western blot was used to detect the expression levels of silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), cleaved caspase-3, Bax, and Bcl-2. In addition to the western blot, immunofluorescence was used to investigate the expression levels of SIRT1 and PGC-1α. Our results suggest that APN peptide increased cell viability, SOD, and GSH-Px levels and decreased LDH release, ROS and MDA levels, and cell apoptosis. APN peptide upregulated the expression of SIRT1, PGC-1α, and Bcl-2 and downregulated the expression of cleaved caspase-3 and Bax. Furthermore, the protective effects of the APN peptide were abolished by SIRT1 siRNA. Our findings suggest that APN peptide protects HT22 neurons against Glu-induced injury by inhibiting neuronal apoptosis and activating SIRT1-dependent PGC-1αsignaling.


Author(s):  
Chuanjie Zhang ◽  
Yan Shen ◽  
Lili Gao ◽  
Xiaojing Wang ◽  
Da Huang ◽  
...  

ObjectiveThe aim of this study is to investigate the biological functions and the underlying mechanisms of DNA polymerase epsilon subunit 2 (POLE2) in renal cell carcinoma (RCC).MethodsThe datasets of POLE2 expression in The Cancer Genome Atlas Kidney Clear Cell Carcinoma (TCGA-KIRC) and International Cancer Genome Consortium (ICGC) databases was selected and the correlation between POLE2 and various clinicopathological parameters was analyzed. The POLE2 expression in RCC tissues was examined by immunohistochemistry. The POLE2 knockdown cell lines were constructed. In vitro and in vivo experiments were carried out to investigate the function of POLE2 on cellular biology of RCC, including cell viability assay, clone formation assay, flow cytometry, wound-healing assay, Transwell assay, qRT-PCR, Western blot, etc. Besides, microarray, co-immunoprecipitation, rescue experiment, and Western blot were used to investigate the molecular mechanisms underlying the functions of POLE2.ResultsPOLE2 was overexpressed in RCC tissues, and high expression of POLE2 was correlated with poor prognosis of RCC. Furthermore, knockdown of POLE2 significantly inhibited cell proliferation, migration, and facilitated apoptosis in vitro. In vivo experiments revealed that POLE2 attenuated RCC tumorigenesis and tumor growth. we also illuminated that stanniocalcin 1 (STC1) was a downstream gene of POLE2, which promoted the occurrence and development of RCC. Besides, knockdown of POLE2 significantly upregulated the expression levels of Bad and p21 while the expression levels of HSP70, IGF-I, IGF-II, survivin, and sTNF-R1 were significantly downregulated. Western blot analysis also showed that knockdown of POLE2 inhibited the expression levels of Cancer-related pathway proteins including p-Akt, CCND1, MAPK9, and PIK3CA.ConclusionKnockdown of POLE2 attenuates RCC cells proliferation and migration by regulating STC1, suggesting that POLE2-STC1 may become a potential target for RCC therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
An-qi Ren ◽  
Hui-jun Wang ◽  
Hai-yan Zhu ◽  
Guan Ye ◽  
Kun Li ◽  
...  

Background and Aims:Rabdosia japonica var. glaucocalyx is a traditional Chinese medicine (TCM) for various inflammatory diseases. This present work aimed to investigate the protective effects of R. japonica var. glaucocalyx glycoproteins on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the potential mechanism.Methods: Glycoproteins (XPS) were isolated from R. japonica var. glaucocalyx, and homogeneous glycoprotein (XPS5-1) was purified from XPS. ANA-1 cells were used to observe the effect of glycoproteins on the secretion of inflammatory mediators by enzyme-linked immunosorbent assay (ELISA). Flow cytometry assay, immunofluorescence assay, and Western blot analysis were performed to detect macrophage polarization in vitro. The ALI model was induced by LPS via intratracheal instillation, and XPS (20, 40, and 80 mg/kg) was administered intragastrically 2 h later. The mechanisms of XPS against ALI were investigated by Western blot, ELISA, and immunohistochemistry.Results:In vitro, XPS and XPS5-1 downregulated LPS-induced proinflammatory mediators production including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and nitric oxide (NO) and upregulated LPS-induced IL-10 secretion. The LPS-stimulated macrophage polarization was also modulated from M1 to M2. In vivo, XPS maintained pulmonary histology with significantly reducing protein concentration and numbers of mononuclear cells in bronchoalveolar lavage fluid (BALF). The level of IL-10 in BALF was upregulated by XPS treatment. The level of cytokines including TNF-α, IL-1β, and IL-6 was downregulated. XPS also decreased infiltration of macrophages and polymorphonuclear leukocytes (PMNs) in lung. XPS suppressed the expression of key proteins in the TLR4/NF-κB signal pathway.Conclusion: XPS was demonstrated to be a potential agent for treating ALI. Our findings might provide evidence supporting the traditional application of R. japonica var. glaucocalyx in inflammation-linked diseases.


2020 ◽  
Author(s):  
Jianfeng Chen ◽  
Mingming Zhang ◽  
Shouyan Zhang ◽  
Junlong Wu ◽  
Shufeng Xue

Abstract Background: This study aimed to investigate the regulatory effect of rno-microRNA-30c-5p (rno-miR-30c-5p) on myocardial ischemia reperfusion (IR) injury in rats and the underlying molecular mechanisms.Methods: A rat model of myocardial IR injury was established. The infarct size was detected by 2,3,5-triphenyltetrazolium chloride staining. The pathologic changes of myocardial tissues were detected by hematoxylin-eosin staining. The apoptosis of myocardial cells was measured by TUNEL staining and flow cytometry. The mRNA expression of rno-miR-30c-5p and Sirtuin 1 (SIRT1) was detected by quantitative real-time PCR. The levels of IL-1β, IL-6 and TNF-α were detected by enzyme linked immunosorbent assay. The protein expression of Bax, Bcl-2, caspase-3, p-IκBα, IκBα, p-NF-κB p65, NF-κB p65 and SIRT1 was detected by Western blot. The interaction between rno-miR-30c-5p and SIRT1 was predicted by TargetScan, and further identified by dual luciferase reporter gene and RNA immunoprecipitation assay.Results: The myocardial IR injury model was successfully established in rats. IR induced the myocardial injury in rats and increased the expression of rno-miR-30c-5p. Overexpression of rno-miR-30c-5p enhanced the inflammation, promoted the apoptosis, and activated NF-κB pathway in IR myocardial cells. SIRT1 was the target gene of rno-miR-30c-5p. Silencing of SIRT1 reversed the effects of rno-miR-30c-5p inhibitor on the apoptosis and NF-κB pathway in IR myocardial cells.Conclusions: Rno-miR-30c-5p promoted the myocardial IR injury in rats through activating NF-κB pathway and down-regulating SIRT1.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yasuto Kunii ◽  
Mizuki Hino ◽  
Junya Matsumoto ◽  
Atsuko Nagaoka ◽  
Hiroyuki Nawa ◽  
...  

Abstract Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) integrates dopaminergic signaling into that of several other neurotransmitters. Calcineurin (CaN), located downstream of dopaminergic pathways, inactivates DARPP-32 by dephosphorylation. Despite several studies have examined their expression levels of gene and protein in postmortem patients’ brains, they rendered inconsistent results. In this study, protein expression levels of DARPP-32 and CaN were measured by enzyme-linked immunosorbent assay (ELISA) in the prefrontal cortex (PFC), and nucleus accumbens (NAc) of 49 postmortem samples from subjects with schizophrenia, bipolar disorder, and normal controls. We also examined the association between this expression and genetic variants of 8 dopaminergic system-associated molecules for 55 SNPs in the same postmortem samples. In the PFC of patients with schizophrenia, levels of DARPP-32 were significantly decreased, while those of CaN tended to increase. In the NAc, both of DARPP-32 and CaN showed no significant alternations in patients with schizophrenia or bipolar disorder. Further analysis of the correlation of DARPP-32 and CaN expressions, we found that positive correlations in controls and schizophrenia in PFC, and schizophrenia in NAc. In PFC, the expression ratio of DARPP-32/CaN were significantly lower in schizophrenia than controls. We also found that several of the aforementioned SNPs may predict protein expression, one of which was confirmed in a second independent sample set. This differential expression of DARPP-32 and CaN may reflect potential molecular mechanisms underlying the pathogenesis of schizophrenia and bipolar disorder, or differences between these two major psychiatric diseases.


Sign in / Sign up

Export Citation Format

Share Document