scholarly journals The interplay between m6A RNA methylation and noncoding RNA in cancer

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Shuai Ma ◽  
Chen Chen ◽  
Xiang Ji ◽  
Jinbo Liu ◽  
Quanbo Zhou ◽  
...  

AbstractN6-methyladenosine (m6A) methylation, one of the most common RNA modifications, has been reported to execute important functions that affect normal life activities and diseases. Most studies have suggested that m6A modification can affect the complexity of cancer progression by regulating biological functions related to cancer. M6A modification of noncoding RNAs regulates the cleavage, transport, stability, and degradation of noncoding RNAs themselves. It also regulates cell proliferation and metastasis, stem cell differentiation, and homeostasis in cancer by affecting the biological function of cells. Interestingly, noncoding RNAs also play significant roles in regulating these m6A modifications. Additionally, it is becoming increasingly clear that m6A and noncoding RNAs potentially contribute to the clinical application of cancer treatment. In this review, we summarize the effect of the interactions between m6A modifications and noncoding RNAs on the biological functions involved in cancer progression. In particular, we discuss the role of m6A and noncoding RNAs as possible potential biomarkers and therapeutic targets in the treatment of cancers.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mingming Wang ◽  
Qinlin Zheng ◽  
Zhengfei Zhao ◽  
Hong Deng ◽  
Qiang Zhang ◽  
...  

Colorectal cancer (CRC) is one of the most common diagnosed cancers around the world. The poor prognosis and high fatality caused by metastasis are still the challenges for clinical treatment. Therefore, it is promising to clarify the detailed molecular mechanism of CRC metastasis. Accumulating evidences indicate that long noncoding RNAs (lncRNAs) play important roles in cancer progression including CRC. In this study, the function of lncRNA UCA1 was investigated. UCA1 was confirmed to be highly expressed in colorectal cancer. Moreover, the UCA1 expression level was positively related to tumor stages. Silencing UCA1 showed inhibitory effect on cell proliferation and metastasis. Both UCA1 and NOTCH3 were validated as direct targets of miR-185. Silencing UCA1 repressed NOTCH3 expression through the miR-185 sponge. NOTCH3 was found to be highly expressed in CRC patients and positively related to UCA1 expression. Furthermore, HES5 was verified as a transcription factor of UCA1, which induced UCA1 expression. In conclusion, UCA1 is a direct target of HES5. UCA1 promotes CRC metastasis through regulating the miR-185/NOTCH3 axis.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiulin Jiang ◽  
Baiyang Liu ◽  
Zhi Nie ◽  
Lincan Duan ◽  
Qiuxia Xiong ◽  
...  

AbstractN6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.


2020 ◽  
Author(s):  
Jianbing Hou ◽  
Yudong Liu ◽  
Du Yan ◽  
Pan Huang ◽  
Zhongze Wang ◽  
...  

Abstract BACKGROUND: Zinc finger CCCH-type containing 15 (ZC3H15), a highly conserved eukaryotic protein, was involved in tumorigenesis and may be a potential biomarker in hepatocellular carcinoma (HCC) and acute myeloid leukemia (AML). However, the biological role of ZC3H15 in gastric cancer (GC) is unclear.METHODS: The potential correlation between ZC3H15 expression and GC prognosis was assessed based on the patient data analysis. The biological role of ZC3H15 in regulating cell proliferation and metastasis was evaluated in vitro and in vivo. In addition, the potential mechanism of ZC3H15 was investigated. RESULTS: we found that ZC3H15 expression was positively correlated with GC progression, including cell growth, metastasis and cancerogenesis. Through further investigations, we found that ZC3H15 could modulate c-Myc protein stability via suppressing the transcription of FBXW7, which was mainly responsible for c-Myc degradation. In addition, we revealed that miR-124-3p, a tumor suppressor of GC, was negatively associated with ZC3H15. We revealed that miR-124-3p was a critical upstream modulator of ZC3H15 in GC.CONCLUSIONS: Taken together, our studies unearth the important roles of ZC3H15 in GC development and suggest that miR-124-3p/ZC3H15/c-Myc axis may be a potential target for the treatment of GC.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yan Zhang ◽  
Xianwu Chen ◽  
Juntao Lin ◽  
Xiaodong Jin

AbstractBladder cancer (BCa) is one of the 10 most common cancers with high morbidity and mortality worldwide. Long noncoding RNAs (lncRNAs), a large class of noncoding RNA transcripts, consist of more than 200 nucleotides and play a significant role in the regulation of molecular interactions and cellular pathways during the occurrence and development of various cancers. In recent years, with the rapid advancement of high-throughput gene sequencing technology, several differentially expressed lncRNAs have been discovered in BCa, and their functions have been proven to have an impact on BCa development, such as cell growth and proliferation, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, and drug-resistance. Furthermore, evidence suggests that lncRNAs are significantly associated with BCa patients’ clinicopathological characteristics, especially tumor grade, TNM stage, and clinical progression stage. In addition, lncRNAs have the potential to more accurately predict BCa patient prognosis, suggesting their potential as diagnostic and prognostic biomarkers for BCa patients in the future. In this review, we briefly summarize and discuss recent research progress on BCa-associated lncRNAs, while focusing on their biological functions and mechanisms, clinical significance, and targeted therapy in BCa oncogenesis and malignant progression.


2019 ◽  
Vol 20 (8) ◽  
pp. 1924 ◽  
Author(s):  
Gugnoni ◽  
Ciarrocchi

Epithelial–mesenchymal transition (EMT) is a multistep process that allows epithelial cells to acquire mesenchymal properties. Fundamental in the early stages of embryonic development, this process is aberrantly activated in aggressive cancerous cells to gain motility and invasion capacity, thus promoting metastatic phenotypes. For this reason, EMT is a central topic in cancer research and its regulation by a plethora of mechanisms has been reported. Recently, genomic sequencing and functional genomic studies deepened our knowledge on the fundamental regulatory role of noncoding DNA. A large part of the genome is transcribed in an impressive number of noncoding RNAs. Among these, long noncoding RNAs (lncRNAs) have been reported to control several biological processes affecting gene expression at multiple levels from transcription to protein localization and stability. Up to now, more than 8000 lncRNAs were discovered as selectively expressed in cancer cells. Their elevated number and high expression specificity candidate these molecules as a valuable source of biomarkers and potential therapeutic targets. Rising evidence currently highlights a relevant function of lncRNAs on EMT regulation defining a new layer of involvement of these molecules in cancer biology. In this review we aim to summarize the findings on the role of lncRNAs on EMT regulation and to discuss their prospective potential value as biomarkers and therapeutic targets in cancer.


Epigenomes ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 5 ◽  
Author(s):  
Lior Lasman ◽  
Jacob H Hanna ◽  
Noa Novershtern

The rising field of RNA modifications is stimulating massive research nowadays. m6A, the most abundant mRNA modification is highly conserved during evolution. Through the last decade, the essential components of this dynamic mRNA modification machinery were found and classified into writer, eraser and reader proteins. m6A modification is now known to take part in diverse biological processes such as embryonic development, cell circadian rhythms and cancer stem cell proliferation. In addition, there is already firm evidence for the importance of m6A modification in stem cell differentiation and gametogenesis, both in males and females. This review attempts to summarize the important results of recent years studying the mechanism underlying stem cell differentiation and gametogenesis processes.


Biomedicines ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 334
Author(s):  
Chin-King Looi ◽  
Ling-Wei Hii ◽  
Siew Ching Ngai ◽  
Chee-Onn Leong ◽  
Chun-Wai Mai

Metastasis is known as the most life-threatening event in cancer patients. In principle, the immune system can prevent tumor development. However, dysfunctional T cells may fail to eliminate the tumor cells effectively and provide additional survival advantages for tumor proliferation and metastasis. Constitutive activation of Ras-associated protein1 (Rap1) has not only led to T cell anergy, but also inhibited autophagy and supported cancer progression through various oncogenic events. Inhibition of Rap1 activity with its negative regulator, Rap1GAP, impairs tumor progression. However, active Rap1 reduces tumor invasion in some cancers, indicating that the pleiotropic effects of Rap1 signaling in cancers could be cancer-specific. All in all, targeting Rap1 signaling and its regulators could potentially control carcinogenesis, metastasis, chemoresistance and immune evasion. Rap1GAP could be a promising therapeutic target in combating cancer.


2020 ◽  
Vol 48 (8) ◽  
pp. 4480-4491 ◽  
Author(s):  
Xiaoyan Wang ◽  
Xinyue Zhang ◽  
Yujie Dang ◽  
Duan Li ◽  
Gang Lu ◽  
...  

Abstract The genetic etiology of premature ovarian insufficiency (POI) has been well established to date, however, the role of long noncoding RNAs (lncRNAs) in POI is largely unknown. In this study, we identified a down-expressed lncRNA HCP5 in granulosa cells (GCs) from biochemical POI (bPOI) patients, which impaired DNA damage repair and promoted apoptosis of GCs. Mechanistically, we discovered that HCP5 stabilized the interaction between YB1 and its partner ILF2, which could mediate YB1 transferring into the nucleus of GCs. HCP5 silencing affected the localization of YB1 into nucleus and reduced the binding of YB1 to the promoter of MSH5 gene, thereby diminishing MSH5 expression. Taken together, we identified that the decreased expression of HCP5 in bPOI contributed to dysfunctional GCs by regulating MSH5 transcription and DNA damage repair via the interaction with YB1, providing a novel epigenetic mechanism for POI pathogenesis.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Yue Zhang ◽  
Huizhu Qian ◽  
Jing He ◽  
Wen Gao

Abstract The tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs) are newly discovered noncoding RNAs in recent years. They are derived from specific cleavage of mature and pre-tRNAs and expressed in various cancers. They enhance cell proliferation and metastasis or inhibit cancer progression. Many studies have investigated their roles in the diagnosis, progression, metastasis, and prognosis of various cancers, but the mechanisms through which they are involved in resistance to cancer treatment are unclear. This review outlines the classification of tRFs and tiRNAs and their mechanisms in cancer drug resistance, thus providing new ideas for cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document