scholarly journals Exosomal miR-100-5p inhibits osteogenesis of hBMSCs and angiogenesis of HUVECs by suppressing the BMPR2/Smad1/5/9 signalling pathway

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Wu Yang ◽  
Weiwen Zhu ◽  
Yunfei Yang ◽  
Minkang Guo ◽  
Husun Qian ◽  
...  

Abstract Background Nontraumatic osteonecrosis of the femoral head (NONFH) is a common, progressive, and refractory orthopaedic disease. Decreased osteogenesis and angiogenesis are considered the main factors in the pathogenesis of NONFH. We aimed to figure out whether exosomes and exosomal miRNA from necrotic bone tissues of patients with NONFH are involved in the pathogenesis of NONFH and reveal the underlying mechanisms. Methods RT-PCR and western blotting (WB) were used to detect the expression of osteogenic, adipogenic, and angiogenic markers. ALP staining and Alizarin Red S (ARS) staining were used to evaluate osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Oil Red O staining was performed to assess the adipocyte deposition. A tube formation assay was used to study angiogenesis of human umbilical vascular endothelial cells (HUVECs). H&E staining and immunohistochemistry (IHC) staining were used to detect the effect of the NONFH exosomes in vivo. MicroRNA sequencing was conducted to identify potential regulators in the NONFH exosomes. The target relationship between miR-100-5p and BMPR2 was predicted and confirmed by a dual luciferase reporter assay and WB. Results The NONFH exosomes reduced the osteogenic differentiation of hBMSCs and angiogenesis of HUVECs. In addition, the injection of the NONFH exosomes caused thinning and disruption of bone trabeculae in the femoral heads of rats. MiR-100-5p expression was upregulated in the NONFH exosomes and inhibited the osteogenesis of hBMSCs and angiogenesis of HUVECs by targeting BMPR2 and suppressing the BMPR2/SMAD1/5/9 signalling pathway. Silencing miR-100-5p expression rescued the reduction in osteogenesis and angiogenesis caused by the NONFH exosomes by activating the BMPR2/SMAD1/5/9 signalling pathway. Conclusion The NONFH exosomal miR-100-5p can lead to NONFH-like damage by targeting BMPR2 and suppressing the BMPR2/SMAD1/5/9 signalling pathway, which may be involved in the pathophysiological mechanisms of nontraumatic osteonecrosis of the femoral head (NONFH).

2021 ◽  
Author(s):  
Wu Yang ◽  
Weiwen Zhu ◽  
Yunfei Yang ◽  
Minkang Guo ◽  
Husun Qian ◽  
...  

Abstract Background: Non-traumatic osteonecrosis of the femoral head (NONFH) is a common, progressive, and refractory orthopedic disease. We aimed to figure out whether exosomal miRNA from necrotic bone tissues of the non-traumatic osteonecrosis of the femoral head (NONFH) patients are involved in the pathogenesis of NONFH and reveal the underlying mechanisms.Methods: RT-PCR and western blotting were used to detect the expression of osteogenic, adipogenic and angiogenic markers. ALP staining and Alizarin red s (ARS) staining were used to evaluate osteogenic differentiation of BMSCs. Oil red staining was conducted to test the adipocyte deposition. Tube formation assay was used to study angiogenesis of vascular endothelial cells (VECs). HE staining and IHC staining were used to detect the effect of NONFH-exosomes in vivo. MicroRNA sequencing was conducted to find potential regulators in NONFH-exosomes.Results: The NONFH-exosomes can lead to NONFH-like impairment on BMSCs, HUVECs and rats. MiR-100-5p was upregulated in NONFH-exosomes and could inhibit osteogenesis of BMSCs and angiogenesis of HUVECs by targeting BMPR2.Conclusion: The NONFH-exosomal miR-100-5p can lead to NONFH-like damage by targeting BMPR2 and suppressing BMPR2/SMAD1/5/9 signaling pathway, which may be involved in the pathomechanism of non-traumatic osteonecrosis of the femoral head (NONFH).


Author(s):  
Bo Jia ◽  
Jun Chen ◽  
Qin Wang ◽  
Xiang Sun ◽  
Jiusong Han ◽  
...  

BackgroundAdipose-derived stem cells (ADSCs) are increasingly used in regenerative medicine because of their potential to differentiate into multiple cell types, including osteogenic lineages. Sirtuin protein 6 (SIRT6) is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that plays important roles in cell differentiation. NOTCH signaling has also been reported to involve in osteogenic differentiation. However, the function of SIRT6 in osteogenic differentiation of ADSCs and its relation to the NOTCH signaling pathways are yet to be explored.MethodsThe in vitro study with human ADSCs (hADSCs) and in vivo experiments with nude mice have been performed. Alkaline phosphatase (ALP) assays and ALP staining were used to detect osteogenic activity. Alizarin Red staining was performed to detect calcium deposition induced by osteogenic differentiation of ADSCs. Western blot, RT-qPCR, luciferase reporter assay, and co-immunoprecipitation assay were applied to explore the relationship between of SIRT6, DNA methyltransferases (DNMTs) and NOTCHs.ResultsSIRT6 promoted ALP activity, enhanced mineralization and upregulated expression of osteogenic-related genes of hADSCs in vitro and in vivo. Further mechanistic studies showed that SIRT6 deacetylated DNMT1, leading to its unstability at protein level. The decreased expression of DNMT1 prevented the abnormal DNA methylation of NOTCH1 and NOTCH2, resulting in the upregulation of their transcription. SIRT6 overexpression partially suppressed the abnormal DNA methylation of NOTCH1 and NOTCH2 by antagonizing DNMT1, leading to an increased capacity of ADSCs for their osteogenic differentiation.ConclusionThis study demonstrates that SIRT6 physical interacts with the DNMT1 protein, deacetylating and destabilizing DNMT1 protein, leading to the activation of NOTCH1 and NOTCH2, Which in turn promotes the osteogenic differentiation of ADSCs.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8909
Author(s):  
Lina Li ◽  
Jie Fang ◽  
Yi Liu ◽  
Li Xiao

Osteogenic differentiation is an important role in dental implantation. Long no coding RNAs (lncRNAs) are a novel class of noncoding RNAs that have significant effects in a variety of diseases. However, the function and mechanisms of LOC100506178 in osteogenic differentiation and migration of bone morphogenetic protein 2 (BMP2)-induced osteogenic differentiation of human bone marrow mesenchymalstem cells (hBMSCs) remain largely unclear. BMP2 was used to induce osteogenic differentiation of hBMSCs. Quantitative real time PCR (qRT-PCR) was used to examine the expression of LOC100506178, miR-214-5p, Runt-related transcription factor 2 (RUNX2), Osterix (Osx), and Alkaline Phosphatase (ALP) in BMP2-induced osteogenic differentiation of hBMSCs. The function of LOC100506178 and miR-214-5p was explored in vitro using Alizarin Red S Staining, ALP activity, as well as in vivo ectopic bone formation. Luciferase reporter assay was performed to assess the association between LOC100506178 and miR-214-5p, as well as miR-214-5p and BMP2. The miR-214-5p sponging potential of LOC100506178 was evaluated by RNA immunoprecipitation. In the present study, the expression of LOC100506178 was found to be increased in BMP2-induced osteogenic differentiation of hBMSCs, accompanied with decreased miR-214-5p expression and increased RUNX2, Osx and ALP expression. LOC100506178 significantly induced, while miR-214-5p suppressed the BMP2-induced osteogenic differentiation of hBMSCs. Mechanistically, LOC100506178 was directly bound to miR-214-5p and miR-214-5p targeted the 3′-untranslated region of BMP2 to negatively regulate its expression. In conclusion, our data indicate a novel molecular pathway LOC100506178/miR-214-5p/BMP2 in relation to hBMSCs differentiation into osteoblasts, which may facilitate bone anabolism.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Kai Fang ◽  
Yueping Zhan ◽  
Ruiqiu Zhu ◽  
Yuqian Wang ◽  
Chengqi Wu ◽  
...  

Abstract Background Antiangiogenic therapy has increasingly become an important strategy for the treatment of colorectal cancer. Recent studies have shown that the tumour microenvironment (TME) promotes tumour angiogenesis. Bufalin is an active antitumour compound whose efficacy has been indicated by previous studies. However, there are very few studies on the antiangiogenic effects of bufalin. Methods Herein, human umbilical vein endothelial cell (HUVEC) tube formation, migration and adhesion tests were used to assess angiogenesis in vitro. Western blotting and quantitative PCR were used to detect relevant protein levels and mRNA expression levels. A subcutaneous xenograft tumour model and a hepatic metastasis model were established in mice to investigate the influence of bufalin on angiogenesis mediated by the TME in vivo. Results We found that angiogenesis mediated by cells in the TME was significantly inhibited in the presence of bufalin. The results demonstrated that the proangiogenic genes in HUVECs, such as VEGF, PDGFA, E-selectin and P-selectin, were downregulated by bufalin and that this downregulation was mediated by inhibition of the STAT3 pathway. Overexpression of STAT3 reversed the inhibitory effects of bufalin on angiogenesis. Furthermore, there was little reduction in angiogenesis when bufalin directly acted on the cells in the tumour microenvironment. Conclusion Our findings demonstrate that bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signalling pathway in vascular endothelial cells, revealing that bufalin may be used as a new antiangiogenic adjuvant therapy medicine to treat colorectal cancer.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Bo Zhang ◽  
Sibei Huo ◽  
Xiao Cen ◽  
Xuefeng Pan ◽  
Xinqi Huang ◽  
...  

Abstract Background Human dental pulp stromal cells (hDPSCs) are promising sources of mesenchymal stem cells (MSCs) for bone tissue regeneration. Circular RNAs (circRNAs) have been demonstrated to play critical roles in stem cell osteogenic differentiation. Herein, we aimed to investigate the role of circAKT3 during osteogenesis of hDPSCs and the underlying mechanisms of its function. Methods We performed circRNA sequencing to investigate the expression profiles of circular RNAs during osteogenesis of hDPSCs. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed to detect the expression pattern of circAKT3 and miR-206 in hDPSCs during osteogenesis. We knocked down circAKT3 and interfered the expression of miR-206 to verify their regulatory role in hDPSC osteogenesis. We detected hDPSCs mineralization by alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining and used dual-luciferase reporter assay to validate the direct binding between circAKT3 and miR-206. To investigate in vivo mineralization, we performed subcutaneous transplantation in nude mice and used hematoxylin and eosin, Masson’s trichrome, and immunohistochemistry staining. Results Totally, 86 circRNAs were differentially expressed during hDPSC osteogenesis, in which 29 were downregulated while 57 were upregulated. circAKT3 was upregulated while miR-206 was downregulated during hDPSC osteogenesis. Knockdown of circAKT3 inhibited ALP/ARS staining and expression levels of osteogenic genes. circAKT3 directly interacted with miR-206, and the latter one suppressed osteogenesis of hDPSCs. Silencing miR-206 partially reversed the inhibitory effect of circAKT3 knockdown on osteogenesis. Connexin 43 (CX43), which positively regulates osteogenesis of stem cells, was predicted as a target of miR-206, and overexpression or knockdown of miR-206 could correspondingly decrease and increase the expression of CX43. In vivo study showed knockdown of circAKT3 suppressed the formation of mineralized nodules and expression of osteogenic proteins. Conclusion During osteogenesis of hDPSCs, circAKT3 could function as a positive regulator by directly sponging miR-206 and arresting the inhibitive effect of miR-206 on CX43 expression.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Zhengxiao Ouyang ◽  
Tingting Tan ◽  
Xianghong Zhang ◽  
Jia Wan ◽  
Yanling Zhou ◽  
...  

AbstractBone tissue has a strong ability to repair itself. When treated properly, most fractures will heal well. However, some fractures are difficult to heal. When a fracture does not heal, it is called nonunion. Approximately, 5% of all fracture patients have difficulty healing. Because of the continuous movement of the fracture site, bone nonunion is usually accompanied by pain, which greatly reduces the quality of life of patients. Bone marrow mesenchymal stem cells (BMSCs) play an important role in the process of nonunion. Circular RNAs (circRNAs) are a unique kind of noncoding RNA and represent the latest research hotspot in the RNA field. At present, no studies have reported a role of circRNAs in the development of nonunion. After isolation of BMSCs from patients with nonunion, the expression of circRNAs in these cells was detected by using a circRNA microarray. Alkaline phosphatase and Alizarin red staining were used to detect the regulation of osteogenic differentiation of BMSCs by hsa_circ_0074834. The target gene of hsa_circ_0074834 was detected by RNA pull-down and double-luciferase reporter assay. The ability of hsa_circ_0074834 to regulate the osteogenesis of BMSCs in vivo was tested by heterotopic osteogenesis and single cortical bone defect experiments. The results showed that the expression of hsa_circ_0074834 in BMSCs from patients with nonunion was decreased. Hsa_circ_0074834 acts as a ceRNA to regulate the expression of ZEB1 and VEGF through microRNA-942-5p. Hsa_circ_0074834 can promote osteogenic differentiation of BMSCs and the repair of bone defects. These results suggest that circRNAs may be a key target for the treatment of nonunion.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Changming Zhao ◽  
Yulin Gu ◽  
Yan Wang ◽  
Qiaozhen Qin ◽  
Ting Wang ◽  
...  

Objective. Accumulating evidence indicates that microRNAs (miRNAs) play crucial roles in osteogenic differentiation. However, the associated mechanisms remain elusive. This paper is aimed at exploring the role of miR-129-5p in regulating bone marrow mesenchymal stem cell (BMSC) differentiation and bone regeneration in vivo and in vitro. Methods. BMSCs were transduced by miR-129-5p mimic, miR-129-5p inhibitor, and negative control lentivirus. The ability of BMSC differentiation to osteoblast was tested by alkaline phosphatase (ALP) and alizarin red staining (ARS). The expression of osteogenic genes (Runx2, Bmp2, and OCN) was examined via quantitative RT-PCR and western blot. A mouse model of calvaria defect was investigated by Micro-CT, immunohistochemistry, and histological examination. The luciferase reporter gene assay was performed to confirm the binding between Dkk3 and miR-129-5p. For the transfection experiments, lipofectamine 3000 was used to transfect pcDNA-Dkk3 into BMSCs to overexpress Dkk3. Coimmunoprecipitation and immunofluorescent localization assay were included for exploring the role of Dkk3 and β-catenin. Results. miR-129-5p was induced in BMSCs and MSC cell line C3H10T1/2 cells under osteogenic medium. Overexpression of miR-129-5p significantly promoted osteogenic differentiation of BMSCs in vitro. Moreover, BMSCs transduced with miR-129-5p mimic exhibited better bone regeneration compared with BMSCs transduced with control counterpart in vivo. Luciferase and western blot data showed that Dickkopf3 (Dkk3) is a target gene of miR-129-5p and the expression of Dkk3 was inhibited in BMSCs transduced with miR-129-5p mimic but enhanced in BMSCs transduced with miR-129-5p inhibitor. In addition, Dkk3 interacted with β-catenin directly. Conclusions. miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration, and miR-129-5p/Dkk3 axis may be new potential targets for the treatment of bone defect and bone loss.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Chao Liu ◽  
An-Song Liu ◽  
Da Zhong ◽  
Cheng-Gong Wang ◽  
Mi Yu ◽  
...  

AbstractBone marrow-derived mesenchymal stem cells (BM-MSCs), the common progenitor cells of adipocytes and osteoblasts, have been recognized as the key mediator during bone formation. Herein, our study aim to investigate molecular mechanisms underlying circular RNA (circRNA) AFF4 (circ_AFF4)-regulated BM-MSCs osteogenesis. BM-MSCs were characterized by FACS, ARS, and ALP staining. Expression patterns of circ_AFF4, miR-135a-5p, FNDC5/Irisin, SMAD1/5, and osteogenesis markers, including ALP, BMP4, RUNX2, Spp1, and Colla1 were detected by qRT-PCR, western blot, or immunofluorescence staining, respectively. Interactions between circ_AFF4 and miR-135a-5p, FNDC5, and miR-135a-5p were analyzed using web tools including TargetScan, miRanda, and miRDB, and further confirmed by luciferase reporter assay and RNA pull-down. Complex formation between Irisin and Integrin αV was verified by Co-immunoprecipitation. To further verify the functional role of circ_AFF4 in vivo during bone formation, we conducted animal experiments harboring circ_AFF4 knockdown, and born samples were evaluated by immunohistochemistry, hematoxylin and eosin, and Masson staining. Circ_AFF4 was upregulated upon osteogenic differentiation induction in BM-MSCs, and miR-135a-5p expression declined as differentiation proceeds. Circ_AFF4 knockdown significantly inhibited osteogenesis potential in BM-MSCs. Circ_AFF4 stimulated FNDC5/Irisin expression through complementary binding to its downstream target molecule miR-135a-5p. Irisin formed an intermolecular complex with Integrin αV and activated the SMAD1/5 pathway during osteogenic differentiation. Our work revealed that circ_AFF4, acting as a sponge of miR-135a-5p, triggers the promotion of FNDC5/Irisin via activating the SMAD1/5 pathway to induce osteogenic differentiation in BM-MSCs. These findings gained a deeper insight into the circRNA-miRNA regulatory system in the bone marrow microenvironment and may improve our understanding of bone formation-related diseases at physiological and pathological levels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xudong Wang ◽  
Taiqiu Chen ◽  
Zhihuai Deng ◽  
Wenjie Gao ◽  
Tongzhou Liang ◽  
...  

Abstract Background Little is known about the implications of circRNAs in the effects of melatonin (MEL) on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoporosis (OP) progression. The aim of our study was to investigate circRNAs in MEL-regulated BMSC differentiation and OP progression. Methods BMSC osteogenic differentiation was measured by qRT-PCR, western blot (WB), Alizarin Red, and alkaline phosphatase (ALP) staining. Differential circRNA and mRNA profiles of BMSCs treated by MEL were characterized by deep sequencing, followed by validation using RT-PCR, Sanger sequencing, and qRT-PCR. Silencing and overexpression of circ_0003865 were conducted for functional investigations. The sponged microRNAs and targeted mRNAs were predicted by bioinformatics and validated by qRT-PCR, RNA pull-down, and dual-luciferase reporter assay. The function of miR-3653-3p and circ_0003865/miR-3653-3p/growth arrest-specific gene 1 (GAS1) cascade was validated for the osteogenic differentiation of BMSCs by CCK-8, qRT-PCR, WB, Alizarin Red, and ALP staining. The effects of circ_0003865 on OP development were tested in murine OP model. Results MEL promoted osteogenic differentiation of BMSCs. RNA sequencing revealed significant alterations in circRNA and mRNA profiles associated with multiple biological processes and signaling pathways. Circ_0003865 expression in BMSCs was significantly decreased by MEL treatment. Silencing of circ_0003865 had no effect on proliferation while promoted osteogenic differentiation of BMSCs. Overexpression of circ_0003865 abrogated the promotion of BMSC osteogenic differentiation induced by MEL, but proliferation of BMSCs induced by MEL had no change whether circ_0003865 was overexpression or not. Furthermore, circ_0003865 sponged miR-3653-3p to promote GAS1 expression in BMSCs. BMSC osteogenic differentiation was enhanced by miR-3653-3p overexpression while BMSC proliferation was not affected. By contrast, miR-3653-3p silencing mitigated the promoted BMSC osteogenic differentiation caused by circ_0003865 silencing, but had no effect on proliferation. Finally, circ_0003865 silencing repressed OP development in mouse model. Conclusion MEL promotes BMSC osteogenic differentiation and inhibits OP pathogenesis by suppressing the expression of circ_0003865, which regulates GAS1 gene expression via sponging miR-3653-3p.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Wahiba Dhahri ◽  
Sylvie Dussault ◽  
Paola Haddad ◽  
Julie Turgeon ◽  
Sophie Tremblay ◽  
...  

Background: Exposure to cigarette smoke is associated with impaired neovascularization in response to ischemia. The precise mechanisms involved in that process remain to be determined. Micro RNA (miR) are emerging as key regulators of several physiological processes, including angiogenesis. Here we investigated the potential role of miRs for the modulation of neovascularization in the context of cigarette smoking. Methods and Results: Human Umbilical Vascular Endothelial Cells (HUVECs) were exposed or not to cigarette smoke extracts (CSE). Using Affimetrix GeneChip miRNA array analysis, we found that the pro-angiogenic miR let-7f was downregulated by 40% in HUVECs exposed to CSE. Using an inhibitor of let-7f, we demonstrated reduced migration and tube formation in HUVECs, reproducing the phenotype induced by CSE. A let-7f mimic could rescue cellular migration and tube formation in HUVECs exposed to CSE. Moreover, the expression of let-7f is significantly reduced in the ischemic muscles of mice exposed to cigarette smoke (CS). In vivo, hindlimb ischemia was surgically provoked by femoral artery removal to mice exposed (SMK) or not to CS for two weeks with a local injection of a control or a let-7f mimic. Let-7f mimic could rescue blood flow recuperation and capillary density in ischemic muscles 21 days post-ischemia associated with improved mobility. We found that CS was associated with reduced number of endothelial progenitor cells (EPCs) and impairment of angiogenic activities. Importantly, let-7f mimic rescued EPC number and EPC functional activities in SMK group. TGF-β-RI and HIF1AN are predicted to be targeted by let-7f and both are increased in SMK mice, whereas the expression of HIF-1a and VEGF are reduced in these mice. Interestingly, SMK mice injected with a let-7f mimic have decreased muscle expression of TGF-β-RI and HIF1AN associated with normalized HIF-1 and VEGF expression. Conclusion: Our results suggest that a reduction in the expression of let-7f could be involved in the cigarette smoke-induced inhibition of angiogenesis through modulation of TGF-β-RI and HIF1AN. Overexpression of let-7f using a miR mimic could constitute a novel therapeutic strategy to improve ischemia-induced neovascularization in pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document