scholarly journals Advances in RNA cytosine-5 methylation: detection, regulatory mechanisms, biological functions and links to cancer

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Chen Xue ◽  
Yalei Zhao ◽  
Lanjuan Li

Abstract As an important posttranscriptional modification of RNA, 5-methylcytosine (m5C) has attracted increasing interest recently, with accumulating evidence suggesting the involvement of RNA m5C modification in multiple cellular processes as well as tumorigenesis. Cooperatively, advances in m5C detection techniques have enabled transcriptome mapping of RNA methylation at single-nucleotide resolution, thus stimulating m5C-based investigations. In this review, we summarize currently available approaches for detecting m5C distribution in RNA as well as the advantages and disadvantages of these techniques. Moreover, we elucidate the regulatory mechanisms of RNA m5C modification by introducing the molecular structure, catalytic substrates, cellular distributions and biological functions of RNA m5C regulators. The functional consequences of m5C modification on mRNAs, tRNAs, rRNAs and other RNA species, including viral RNAs and vault RNAs, are also discussed. Finally, we review the role of RNA m5C modification in cancer pathogenesis and progression, in hopes of providing new insights into cancer treatment.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiu Han ◽  
Lin Wang ◽  
Qingzhen Han

Abstract N6-methyladenosine (m6A) modification is the most common internal modification of eukaryotic mRNA and is widely involved in many cellular processes, such as RNA transcription, splicing, nuclear transport, degradation, and translation. m6A has been shown to plays important roles in the initiation and progression of various cancers. The altered metabolic programming of cancer cells promotes their cell-autonomous proliferation and survival, leading to an indispensable hallmark of cancers. Accumulating evidence has demonstrated that this epigenetic modification exerts extensive effects on the cancer metabolic network by either directly regulating the expression of metabolic genes or modulating metabolism-associated signaling pathways. In this review, we summarized the regulatory mechanisms and biological functions of m6A and its role in cancer metabolic reprogramming.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1037 ◽  
Author(s):  
Cho ◽  
Kim ◽  
Baek ◽  
Kim ◽  
Lee

Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.


2017 ◽  
Vol 63 (4) ◽  
Author(s):  
Magdalena Małgowska

G-quadruplexes are non-canonical secondary structures which may be formed by guanine rich sequences, both in vitro and in living cells. The number of biological functions assigned to these structural motifs has grown rapidly since the discovery of their involvement in the telomere maintenance. Knowledge of the three-dimensional structures of G-quadruplexes plays an important role in understanding their conformational diversity, physiological functions, and in the design of novel drugs targeting G-quadruplexes. For the last decades, structural studies have been mainly focused on the DNA G-quadruplexes. Their RNA counterparts gained an increased interest along with still-emerging recognition of the central role of RNA in multiple cellular processes. In this review we focus on structural properties of RNA G-quadruplexes, based on high-resolution structures, available in RCSB PDB data base and on structural models. In addition, we point out to the current challenges in this field of research.


2020 ◽  
Vol 8 (12) ◽  
pp. 1951
Author(s):  
Anthony Balistreri ◽  
Emily Goetzler ◽  
Matthew Chapman

Amyloids are a class of protein aggregates that have been historically characterized by their relationship with human disease. Indeed, amyloids can be the result of misfolded proteins that self-associate to form insoluble, extracellular plaques in diseased tissue. For the first 150 years of their study, the pathogen-first definition of amyloids was sufficient. However, new observations of amyloids foster an appreciation for non-pathological roles for amyloids in cellular systems. There is now evidence from all domains of life that amyloids can be non-pathogenic and functional, and that their formation can be the result of purposeful and controlled cellular processes. So-called functional amyloids fulfill an assortment of biological functions including acting as structural scaffolds, regulatory mechanisms, and storage mechanisms. The conceptual convergence of amyloids serving a functional role has been repeatedly confirmed by discoveries of additional functional amyloids. With dozens already known, and with the vigorous rate of discovery, the biology of amyloids is robustly represented by non-pathogenic amyloids.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jun Yang ◽  
Chaoju Gong ◽  
Qinjian Ke ◽  
Zejun Fang ◽  
Xiaowen Chen ◽  
...  

Histone deacetylase 5 (HDAC5) is a class II HDAC. Aberrant expression of HDAC5 has been observed in multiple cancer types, and its functions in cell proliferation and invasion, the immune response, and maintenance of stemness have been widely studied. HDAC5 is considered as a reliable therapeutic target for anticancer drugs. In light of recent findings regarding the role of epigenetic reprogramming in tumorigenesis, in this review, we provide an overview of the expression, biological functions, regulatory mechanisms, and clinical significance of HDAC5 in cancer.


2021 ◽  
Author(s):  
Marie Nollet ◽  
Alexander Agrotis ◽  
Fanourios Michailidis ◽  
Arran David Dokal ◽  
Vinothini Rajeeve ◽  
...  

LC3 (Light Chain 3) is a key player of autophagy, a major stress-responsive proteolysis pathway promoting cellular homeostasis. It coordinates the formation and maturation of autophagosomes and recruits cargo to be further degraded upon autophagosome-lysosome fusion. To orchestrate its functions, LC3 binds to multiple proteins from the autophagosomes inner and outer membranes, but the full extent of these interactions is not known. Moreover, LC3 has been increasingly reported in other cellular locations than the autophagosome, with cellular outcome not fully understood and not all related to autophagy. Furthermore, novel functions of LC3 as well as autophagy can occur in cells growing in a normal medium thus in non-stressed conditions. A better knowledge of the molecule in proximity to LC3 in normal growth conditions will improve the understanding of LC3 function in autophagy and in other cell biology function. Using an APEX2 based proteomic approach, we have detected 407 proteins in proximity to the well-characterised LC3B isoform in non-stress conditions. These include known and novel LC3B proximity proteins, associated with various cell localisation and biological functions. Sixty-nine of these proteins contain a putative LIR (LC3 Interacting Region) including 41 not reported associated to autophagy. Several APEX2 hits were validated by co-immunoprecipitation and co-immunofluorescence. This study uncovers the LC3B global interactome and reveals novel LC3B interactors, irrespective of LC3B localisation and function. This knowledge could be exploited to better understand the role of LC3B in autophagy and non-autophagy cellular processes.


BMC Genomics ◽  
2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Isabelle Rosinski-Chupin ◽  
Elisabeth Sauvage ◽  
Odile Sismeiro ◽  
Adrien Villain ◽  
Violette Da Cunha ◽  
...  

2021 ◽  
Author(s):  
Ruibao Su ◽  
Di Wang ◽  
Changchang Cao ◽  
Yuanchao Xue

Abstract RNA-binding proteins (RBPs) directly interact with various RNAs in living cells to regulate their processing, translation, and stability. Identifying the precise binding sites of RBPs is critical for appreciating their physiological or pathological roles in germline and early embryo development. Current methods typically need millions of cells to map RBP binding positions, which prevents us from appreciating the crucial role of RBPs in early development. Here, we present the LACE-seq method for unbiased mapping of RBP-binding sites at single-nucleotide resolution in fewer cells or even single oocytes. LACE-seq depends on RBP-mediated reverse transcription termination, and linear amplification of the cDNA ends for deep sequencing. To further promote its application, we describe a step-by-step protocol about how to construct a successful LACE-seq library.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guang-Fei Yang ◽  
Xin Zhang ◽  
Yi-Ge Su ◽  
Ren Zhao ◽  
Yan-Yang Wang

AbstractThe balance between ubiquitination and deubiquitination is critical for the degradation, transport, localization, and activity of proteins. Deubiquitinating enzymes (DUBs) greatly contribute to the balance of ubiquitination and deubiquitination, and they have been widely studied due to their fundamental role in cancer. DUB3/ubiquitin-specific protease 17 (USP17) is a type of DUB that has attracted much attention in cancer research. In this review, we summarize the biological functions and regulatory mechanisms of USP17 in central nervous system, head and neck, thoracic, breast, gastrointestinal, genitourinary, and gynecologic cancers as well as bone and soft tissue sarcomas, and we provide new insights into how USP17 can be used in the management of cancer.


2021 ◽  
Vol 15 ◽  
Author(s):  
Soo Mi Ki ◽  
Hui Su Jeong ◽  
Ji Eun Lee

Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.


Sign in / Sign up

Export Citation Format

Share Document