scholarly journals A comparative study of greener alternatives for nanocellulose production from sugarcane bagasse

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Bhargavi Pula ◽  
Shradha Ramesh ◽  
Sirisha Pamidipati ◽  
Purnima Doddipatla

AbstractUse of enzyme for extraction of nanocellulose from sugarcane bagasse is greener alternative. Literature indicates that effectiveness of these enzymes can be improved by auxiliary enzymes or mediators. In the current study, extraction of nanocellulose using laccase with these moderators, auxiliary enzyme glucose oxidase and mediator molecule, ABTS [2,2′-azinobis(3-ethylbenzthiazoline-6-sulfonate)] individually was done. Cellulose and lignin content, FT-IR, TGA and DSC analysis, XRD, SEM and PSA were done. Enzyme moderators improved the performance of laccase in lignin degradation. Lignin and cellulose content, crystallinity were used as parameters to optimize the concentrations, which was found to be ABTS (at 1.4 mM) and glucose oxidase (at 0.15 mg ml−1). At the optimal concentration, nanocellulose was extracted. Properties of nanocellulose obtained from both routes were compared. Size analysis revealed 339 nm and 636 nm for nanocellulose obtained with glucose oxidase and ABTS, respectively. Defibrillation was better in the case of the former one as seen from SEM. Graphical Abstract

2021 ◽  
Vol 13 (2) ◽  
pp. 159-171
Author(s):  
Erdiana Gultom ◽  
◽  
Hestina Hestina ◽  
Nova Florentina ◽  
Barita Aritonang ◽  
...  

Research on paper made from coconut and tofu waste has been carried out using the alkalization method of separation technique, with the optimum composition as follows: NaOH concentration used is 3.0% and cooking temperature is 100 0C and the time required is 90 minutes. The results of the catheterization test of paper made from coconut dregs and tofu have a water content of 3.2%; pH 6.9, pulp content 65.75%; cellulose content 80.22%; lignin content 18.27%. The results of the FT-IR spectrum analysis of coconut pulp and tofu pulp are suitable for use as raw materials for making paper because they contain cellulose fibers. This is indicated by the appearance of the O-H hydroxyl group which is observed at a wavenumber of 3312 cm-1. Based on the SEM results, the surface morphology of the coconut pulp and tofu combination paper shows that the surface structure is the denser the fiber bonds, the smaller the fiber diameter, the better the mechanical properties. The results of the research conclusions explain that, paper made from coconut and tofu waste has met the requirements set by SNI 14-0444-1989. Keywords: Paper, Cellulose, Coconut pulp, Tofu pulp, Lignin


2017 ◽  
Vol 85 (2) ◽  
Author(s):  
. ISROI

Pleurotus floridanus have ability on lignin degradation by producing ligninolytic enzyme and prefer to degrade lignin than carbohydrate (hemicellulose and cellulose). Oil palm empty fruit bunches has been pretreated using P. floridanus.  Addition of cation (Cu2+) on biological pretreatment reduced lignin content and increased digestibility of the empty fruit bunches. P. floridanus reduce lignin and hemicellulose content from 23.9% to 10.1% and from 20.8% to 16.9%, respectively. P. floridanus did not degrade cellulose. Cellulose content of empty fruit bunches increase from 40.4% to 51.7%. Crystallinity of empty fruit bunches reduced after biological pretreatment. Crystallinity presented as LOI (lateral order index) of un-treated and biological pretreated oil palm empty fruit bunches are 2.08 and 1.44. Digestibility of the empty fruit bunches increased from 17.2% to 60.3% by biological pretreatment.[Key words:  biological pretreatment, oil palm empty fruit bunches, Pleurotus floridanus, biofuel, white-rot fungi, lignocellulose]AbstrakPleurotus floridanus memiliki kemampuan untuk mendegradasi lignin dengan memproduksi enzim ligninolitik dan lebih memilih untuk mendegradasi lignin daripada karbohidrat (hemiselulosa dan selulosa). Kemampuan unik P. floridanus ini dimanfaatkan dalam pretreatment biologi tandan kosong kelapa sawit. Penambahan kation (Cu2+) pada pretreatment biologi menurunkan kandungan lignin dan meningkatkan digestibiliti tandan kosong kelapa sawit. Perlakuan P. floridanus mengurangi kandungan lignin dan hemiselulosa dari 23,9% menjadi 10,1% dan dari 20,8% menjadi 16,9%. Perlakuan P. floridanus tidak menurunkan kandungan selulosa. Kandungan selulosa tandan kosong kelapa sawit meningkat dari 40,4% menjadi 51,7%. Kristalinitas tandan kosong menurun setelah pretreatment biologi. Kristalinitas yang dinyatakan dalam LOI (LOI, Lateral Order Index) adalah 2,08 untuk tandan kosong tanpa pretreatment biologi dan 1,44 untuk tandan kosong dengan pretreatment biologi. Digestibiliti itandan kosong meningkat dari 17,2% menjadi 60,3%.[Kata kunci: Pretreatment biologi, tandan kosong kelapa sawit, jamur pelapuk putih, lignoselulosa, Pleurotus floridanus]


2018 ◽  
Vol 6 (02) ◽  
pp. 105-120
Author(s):  
Muhammad Rouf Suprayogi ◽  
Annisa Mufida ◽  
Edwin Azwar

In composite science, desirable materials that are lighter but have the power and quality that can match or even exceed the material that has been there before. The purpose of this study was to investigate the effect of cellulose fiber addition from banana gedebok to tensile strength, compressive strength and damping of concrete composite sound. To achieve this objective, mixing of cellulose fibers with K-275 quality concrete mix with variation of 0% and 5% substitution in which the cellulose is varied in powder and wicker form. Delignification of lignin content from banana gedebok was done by soaking and drying method without any variation and yielding powder having cellulose content of 13,0388%, hemicellulose 18,2796% and lignin 0,6684%. This study produces concrete composites that have a tensile strength and a compressive strength lower than that of normal concrete. Normally reinforced concrete tensile strength value 94.5 kg / cm2, 71.4 kg / cm2 cellulose powder concrete and 90.3 kg / cm2 cellulose woven concrete. Normal concrete compressive strength value 334,22 kg / cm2, cellulose powder concrete 215,7 kg / cm2, and cellulose webbing concrete 157,98 kg / cm2. As for the power damping sound of cellulose webbing concrete has the highest damping power compared to other concrete with the absorbed sound intensity that is 52-68 dB


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Leila Khaleghipour ◽  
Javier A. Linares-Pastén ◽  
Hamid Rashedi ◽  
Seyed Omid Ranaei Siadat ◽  
Andrius Jasilionis ◽  
...  

AbstractSugarcane processing roughly generates 54 million tonnes sugarcane bagasse (SCB)/year, making SCB an important material for upgrading to value-added molecules. In this study, an integrated scheme was developed for separating xylan, lignin and cellulose, followed by production of xylo-oligosaccharides (XOS) from SCB. Xylan extraction conditions were screened in: (1) single extractions in NaOH (0.25, 0.5, or 1 M), 121 °C (1 bar), 30 and 60 min; (2) 3 × repeated extraction cycles in NaOH (1 or 2 M), 121 °C (1 bar), 30 and 60 min or (3) pressurized liquid extractions (PLE), 100 bar, at low alkalinity (0–0.1 M NaOH) in the time and temperature range 10–30 min and 50–150 °C. Higher concentration of alkali (2 M NaOH) increased the xylan yield and resulted in higher apparent molecular weight of the xylan polymer (212 kDa using 1 and 2 M NaOH, vs 47 kDa using 0.5 M NaOH), but decreased the substituent sugar content. Repeated extraction at 2 M NaOH, 121 °C, 60 min solubilized both xylan (85.6% of the SCB xylan), and lignin (84.1% of the lignin), and left cellulose of high purity (95.8%) in the residuals. Solubilized xylan was separated from lignin by precipitation, and a polymer with β-1,4-linked xylose backbone substituted by arabinose and glucuronic acids was confirmed by FT-IR and monosaccharide analysis. XOS yield in subsequent hydrolysis by endo-xylanases (from glycoside hydrolase family 10 or 11) was dependent on extraction conditions, and was highest using xylan extracted by 0.5 M NaOH, (42.3%, using Xyn10A from Bacillus halodurans), with xylobiose and xylotriose as main products. The present study shows successful separation of SCB xylan, lignin, and cellulose. High concentration of alkali, resulted in xylan with lower degree of substitution (especially reduced arabinosylation), while high pressure (using PLE), released more lignin than xylan. Enzymatic hydrolysis was more efficient using xylan extracted at lower alkaline strength and less efficient using xylan obtained by PLE and 2 M NaOH, which may be a consequence of polymer aggregation, via remaining lignin interactions.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2008
Author(s):  
Samsul Rizal ◽  
N. I. Saharudin ◽  
N. G. Olaiya ◽  
H. P. S. Abdul Khalil ◽  
M. K. Mohamad Haafiz ◽  
...  

The degradation and mechanical properties of potential polymeric materials used for green manufacturing are significant determinants. In this study, cellulose nanofibre was prepared from Schizostachyum brachycladum bamboo and used as reinforcement in the PLA/chitosan matrix using melt extrusion and compression moulding method. The cellulose nanofibre(CNF) was isolated using supercritical carbon dioxide and high-pressure homogenisation. The isolated CNF was characterised with transmission electron microscopy (TEM), FT-IR, zeta potential and particle size analysis. The mechanical, physical, and degradation properties of the resulting biocomposite were studied with moisture content, density, thickness swelling, tensile, flexural, scanning electron microscopy, thermogravimetry, and biodegradability analysis. The TEM, FT-IR, and particle size results showed successful isolation of cellulose nanofibre using this method. The result showed that the physical, mechanical, and degradation properties of PLA/chitosan/CNF biocomposite were significantly enhanced with cellulose nanofibre. The density, thickness swelling, and moisture content increased with the addition of CNF. Also, tensile strength and modulus; flexural strength and modulus increased; while the elongation reduced. The carbon residue from the thermal degradation and the glass transition temperature of the PLA/chitosan/CNF biocomposite was observed to increase with the addition of CNF. The result showed that the biocomposite has potential for green and sustainable industrial application.


2010 ◽  
Vol 61 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Y. F. He ◽  
F. R. Li ◽  
R. M. Wang ◽  
F. Y. Li ◽  
Y. Wang ◽  
...  

Xanthate was successfully grafted onto bentonite by a relatively simple solution reaction. The obtained xanthated bentonite (XBent) was characterized by FT-IR spectrophotometer, thermogravimetric analysis (TG), particle size analysis, x-ray diffraction (XRD) and scanning electron microscopy (SEM). XBent acting as a type of environmentally friendly adsorbent was applied to remove lead ions from aqueous solutions. The optimum conditions were as follows: [Pb2 + ] = 500 mg L−1, [XBent] = 2 g L−1, pH = 5.0; oscillating 60 min under 200 rpm at 25°C. The removal rate of lead was up to 99.9%. It was found that the lead(II) ions—XBent adsorption isotherm model fitted well to the Freundlich isotherm. The adsorption mechanism was also investigated by SEM and XRD, which concluded that lead ions were complexed or chelated with XBent. XBent appears to have potential to be used later in water treatment as a type of inorganic polymer reagent.


2015 ◽  
Vol 192 ◽  
pp. 670-676 ◽  
Author(s):  
Gabriela Piccolo Maitan-Alfenas ◽  
Evan Michael Visser ◽  
Rafael Ferreira Alfenas ◽  
Bráulio Ris G. Nogueira ◽  
Guilherme Galvão de Campos ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Roni Pazla ◽  
Novirman Jamarun ◽  
Fauzia Agustin ◽  
Mardiati Zain ◽  
Arief Arief ◽  
...  

Abstract. Pazla R, Jamarun N, Agustin F, Zain M, Cahyani NO. 2020. Effects of supplementation with phosphorus, calcium and manganese during oil palm frond fermentation by Phanerochaete chrysosporium on ligninase enzyme activity. Biodiversitas 21: 1833-1838. The objective of this study was to evaluate the effects of supplementation with phosphorus (P) in combination with calcium (Ca) and manganese (Mn) during oil palm frond (OPF) fermentation by Phanerochaete chrysosporium on ligninase enzyme activity and lignin degradation. This study was carried out using a randomized complete design with 3 treatments (addition of P, Ca and Mn) and 5 replicates. The following treatments were performed: T1 (P 1000 + Ca 2000 + Mn 150 ppm), T2 (P 1500 + Ca 2000 + Mn 150 ppm), and T3  (P 2000 + Ca 2000 +Mn 150 ppm). The data were subjected to an analysis of variance (ANOVA), and differences between treatment means were tested using Duncan's multiple range test (DMRT). The parameters measured were as follows: lignin peroxidase (LiP) activity (U/mL), manganese peroxidase (MnP) activity (U/mL), crude protein (CP) content (%), crude fiber (CF) content (%) and the decrease in lignin (%). The results revealed a significant increase in LiP activity and CP content and a decrease in the lignin content (p<0.05) by the addition of P in the T3 treatment. However, the treatment nonsignificantly increased (p>0.05) MnP activity and significantly decreased (P<0.05) the CF content. In conclusion, supplementation of the OPF fermentation process with P 2000, Ca 2000, and Mn 150 ppm resulted in the highest ligninase enzyme activity and in decreased lignin content.


Sign in / Sign up

Export Citation Format

Share Document