scholarly journals The Grey-backed Shrike parents adopt brood survival strategy in both the egg and nestling phases

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liqing Fan ◽  
Lifang Gao ◽  
Zhenqin Zhu ◽  
Xiaodan Zhang ◽  
Wen Zhang ◽  
...  

Abstract Background Great diversity exists in the parenting pattern of altricial birds, which has long been considered as an adaptive response to specific environmental conditions but not to their life-history style. Methods We examined the egg-laying and nestling-raising pattern of the Grey-backed Shrike (Lanius tephronotus) that breeds only once a year on the Tibetan Plateau. We compared the dietary composition to that of its sympatric competitor, the Brown-cheeked Laughing Thrush (Trochalopteron henrici) that breeds twice a year. Results Female Grey-backed Shrikes produced a fixed clutch size of five, with increasing egg size by their laying sequence. The last offspring in the brood is disadvantageous in the size hierarchy because it hatches later. However, they had the largest fledgling body mass. These findings indicate that Grey-backed Shrikes adopt the brood survival strategy in both the egg and nestling phases. Moreover, males and females exhibit no sexual division in providing parental care as they made an equal contribution to the total amount of food delivered to their brood. This parenting pattern of Grey-backed Shrikes, as well as their dietary items, differ significantly from those of the Brown-cheeked Laughing Thrush. Conclusions We suggest that the differentiation in life-history style between sympatric competitors, rather than a behavioral response to specific environmental conditions, plays a decisive role in driving avian parenting strategy diversification.

1953 ◽  
Vol 27 (1-2) ◽  
pp. 17-28 ◽  
Author(s):  
S. B. Kendall

1. This paper describes the life-history of Limnaea truncatula under laboratory conditions.2. Under controlled conditions sexual maturity may be reached in 28 days and egg laying continues for the greater part of the snail's life.3. Under good environmental conditions each snail may lay as many as 60 eggs in a single day and a total of more than 3,000 in a life approximately a year.4. Egg laying occurs during every month and at temperatures as low as 10°C. to 11°C. The incubation period of the egg is related to the atmospheric temperature.5. The longevity of the snail is likely to be related to its rate of growth and to environmental conditions including periods of drought.6. The snail remains fully active at temperatures as low at 1.5°C.Sustained temperatures much above 20°C. are unfavourable, temperaturesabove 25°C. proving markedly deleterious.


2020 ◽  
Vol 639 ◽  
pp. 185-197 ◽  
Author(s):  
MJ Malick ◽  
ME Hunsicker ◽  
MA Haltuch ◽  
SL Parker-Stetter ◽  
AM Berger ◽  
...  

Environmental conditions can have spatially complex effects on the dynamics of marine fish stocks that change across life-history stages. Yet the potential for non-stationary environmental effects across multiple dimensions, e.g. space and ontogeny, are rarely considered. In this study, we examined the evidence for spatial and ontogenetic non-stationary temperature effects on Pacific hake Merluccius productus biomass along the west coast of North America. Specifically, we used Bayesian additive models to estimate the effects of temperature on Pacific hake biomass distribution and whether the effects change across space or life-history stage. We found latitudinal differences in the effects of temperature on mature Pacific hake distribution (i.e. age 3 and older); warmer than average subsurface temperatures were associated with higher biomass north of Vancouver Island, but lower biomass offshore of Washington and southern Vancouver Island. In contrast, immature Pacific hake distribution (i.e. age 2) was better explained by a nonlinear temperature effect; cooler than average temperatures were associated with higher biomass coastwide. Together, our results suggest that Pacific hake distribution is driven by interactions between age composition and environmental conditions and highlight the importance of accounting for varying environmental effects across multiple dimensions.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Louise C Archer ◽  
Stephen A Hutton ◽  
Luke Harman ◽  
W Russell Poole ◽  
Patrick Gargan ◽  
...  

Abstract Metabolic rates vary hugely within and between populations, yet we know relatively little about factors causing intraspecific variation. Since metabolic rate determines the energetic cost of life, uncovering these sources of variation is important to understand and forecast responses to environmental change. Moreover, few studies have examined factors causing intraspecific variation in metabolic flexibility. We explore how extrinsic environmental conditions and intrinsic factors contribute to variation in metabolic traits in brown trout, an iconic and polymorphic species that is threatened across much of its native range. We measured metabolic traits in offspring from two wild populations that naturally show life-history variation in migratory tactics (one anadromous, i.e. sea-migratory, one non-anadromous) that we reared under either optimal food or experimental conditions of long-term food restriction (lasting between 7 and 17 months). Both populations showed decreased standard metabolic rates (SMR—baseline energy requirements) under low food conditions. The anadromous population had higher maximum metabolic rate (MMR) than the non-anadromous population, and marginally higher SMR. The MMR difference was greater than SMR and consequently aerobic scope (AS) was higher in the anadromous population. MMR and AS were both higher in males than females. The anadromous population also had higher AS under low food compared to optimal food conditions, consistent with population-specific effects of food restriction on AS. Our results suggest different components of metabolic rate can vary in their response to environmental conditions, and according to intrinsic (population-background/sex) effects. Populations might further differ in their flexibility of metabolic traits, potentially due to intrinsic factors related to life history (e.g. migratory tactics). More comparisons of populations/individuals with divergent life histories will help to reveal this. Overall, our study suggests that incorporating an understanding of metabolic trait variation and flexibility and linking this to life history and demography will improve our ability to conserve populations experiencing global change.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Melanie Lindner ◽  
Irene Verhagen ◽  
Heidi M. Viitaniemi ◽  
Veronika N. Laine ◽  
Marcel E. Visser ◽  
...  

Abstract Background DNA methylation is likely a key mechanism regulating changes in gene transcription in traits that show temporal fluctuations in response to environmental conditions. To understand the transcriptional role of DNA methylation we need simultaneous within-individual assessment of methylation changes and gene expression changes over time. Within-individual repeated sampling of tissues, which are essential for trait expression is, however, unfeasible (e.g. specific brain regions, liver and ovary for reproductive timing). Here, we explore to what extend between-individual changes in DNA methylation in a tissue accessible for repeated sampling (red blood cells (RBCs)) reflect such patterns in a tissue unavailable for repeated sampling (liver) and how these DNA methylation patterns are associated with gene expression in such inaccessible tissues (hypothalamus, ovary and liver). For this, 18 great tit (Parus major) females were sacrificed at three time points (n = 6 per time point) throughout the pre-laying and egg-laying period and their blood, hypothalamus, ovary and liver were sampled. Results We simultaneously assessed DNA methylation changes (via reduced representation bisulfite sequencing) and changes in gene expression (via RNA-seq and qPCR) over time. In general, we found a positive correlation between changes in CpG site methylation in RBCs and liver across timepoints. For CpG sites in close proximity to the transcription start site, an increase in RBC methylation over time was associated with a decrease in the expression of the associated gene in the ovary. In contrast, no such association with gene expression was found for CpG site methylation within the gene body or the 10 kb up- and downstream regions adjacent to the gene body. Conclusion Temporal changes in DNA methylation are largely tissue-general, indicating that changes in RBC methylation can reflect changes in DNA methylation in other, often less accessible, tissues such as the liver in our case. However, associations between temporal changes in DNA methylation with changes in gene expression are mostly tissue- and genomic location-dependent. The observation that temporal changes in DNA methylation within RBCs can relate to changes in gene expression in less accessible tissues is important for a better understanding of how environmental conditions shape traits that temporally change in expression in wild populations.


2010 ◽  
Vol 42 (3) ◽  
pp. 339-346 ◽  
Author(s):  
Andreas ENGELEN ◽  
Peter CONVEY ◽  
Sieglinde OTT

AbstractCoal Nunatak is an ice-free inland nunatak located on southern Alexander Island, adjacent to the west coast of the Antarctic Peninsula. Situated close to the Antarctic continent, it is characterized by harsh environmental conditions. Macroscopic colonization is restricted to micro-niches offering suitable conditions for a small number of lichens and mosses. The extreme environmental conditions place particular pressures on colonizers. Lepraria borealis is the dominant crustose lichen species present on Coal Nunatak, and shows distinctive features in its life history strategy, in particular expressing unusually low selectivity of the mycobiont towards potential photobionts. To assess selectivity, we measured algal DNA sequence polymorphism in a region of 480–660 bp of the nuclear internal transcribed spacer region of ribosomal DNA. We identified three different photobiont species, belonging to two different genera. We interpret this strategy as being advantageous in facilitating the colonization and community dominance of L. borealis under the isolation and extreme environmental conditions of Coal Nunatak.


2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


2021 ◽  
Author(s):  
Lisa Maggioli ◽  
Aitor Alameda ◽  
Jose Raúl Román ◽  
Sonia Chamizo ◽  
Carlotta Pagli ◽  
...  

<p>Nowadays, land use change and the impacts of climate change are accelerating land degradation processes in drylands. These regions occupy around 40% of the Earth land’s surface and their extension is likely to represent around 45% by 2050. Biocrusts (complex communities formed by bacteria, cyanobacteria, microalgae, fungi, lichens and mosses which live in the uppermost layer of soil and can cover up to 70% of the interplant areas) play a decisive role in soil stabilization and fertility in these regions, so that they have been proposed as restoration agents in degraded dryland sites, where water scarcity and the harsh environmental conditions can hinder traditional restoration based on the use of vegetation establishment. Within the different biocrust-forming organisms, the use of cyanobacteria as a biotechnological tool to combat soil degradation, is gaining increasing importance. Cyanobacteria are the pioneer colonizers of terrestrial ecosystems, they are able to resist extreme environmental conditions, i.e. high temperatures, prolonged UV radiation and nutrients scarcity. At the same time, they improve physical-chemical properties of the soil by fixing carbon and many species also the atmospheric nitrogen and by producing exopolysaccharides that strongly increase soil stability and eventually creating a more favorable environment for colonization by other organisms. Despite several laboratory studies demonstrate the effectiveness of inoculating soil with cyanobacteria and their effect in increasing soil carbon and nutrient content, few field studies are available and many of them show a limited success probably because of the harsh environmental conditions that hamper an optimal growth. In the present work, soils collected from different ecosystems  in SE Spain were inoculated with a consortium of four native cyanobacteria species: Nostoc comune, Trichocoleus desertorum, Tolypothrix distorta and Leptolyngbia sp., and  different techniques to reduce abiotic stresses were tested in outdoors conditions: 1) cyanobacteria + soil covered with a mesh made of Stipa tenacissima, 2) cyanobacteria+ Plantago-based stabilizer amendment, and 3) cyanobacteria + sewage sludge (incorporated as an organic amendment) . The application of plant-based ameliorating strategies resulted in a higher chlorophyll a content, which reflects an improvement of cyanobacterial growth compared to the inoculation lacking the application of ameliorating techniques. The soil albedo also decreased due to surface darkening, thus also indicating a higher cyanobacterial growth in these treatments. Wind tunnel experiments also demonstrated a lower susceptibility to wind erosion in the cyanobacteria-inoculated soils combined with application of the plant mesh or the Plantago amendment. These results highlight the importance of using plant-based amelioration techniques to reduce abiotic stresses, especially in the early stages of soil colonization after cyanobacteria inoculation. Regarding the use of sewage sludge, it was demonstrated that their application at low doses improved cyanobacteria growth, which was reflected in an increase in chlorophyll a content as well as in a significant increase of aggregate stability and reduced soil susceptibility to wind erosion. This study shows promising results to enhance cyanobacterial growth and prevent cyanobacteria inoculum loss under natural conditions. Ongoing experiments will evaluate the effectiveness of these strategies under field conditions.</p>


2020 ◽  
Vol 117 (30) ◽  
pp. 18119-18126 ◽  
Author(s):  
Line S. Cordes ◽  
Daniel T. Blumstein ◽  
Kenneth B. Armitage ◽  
Paul J. CaraDonna ◽  
Dylan Z. Childs ◽  
...  

Seasonal environmental conditions shape the behavior and life history of virtually all organisms. Climate change is modifying these seasonal environmental conditions, which threatens to disrupt population dynamics. It is conceivable that climatic changes may be beneficial in one season but result in detrimental conditions in another because life-history strategies vary between these time periods. We analyzed the temporal trends in seasonal survival of yellow-bellied marmots (Marmota flaviventer) and explored the environmental drivers using a 40-y dataset from the Colorado Rocky Mountains (USA). Trends in survival revealed divergent seasonal patterns, which were similar across age-classes. Marmot survival declined during winter but generally increased during summer. Interestingly, different environmental factors appeared to drive survival trends across age-classes. Winter survival was largely driven by conditions during the preceding summer and the effect of continued climate change was likely to be mainly negative, whereas the likely outcome of continued climate change on summer survival was generally positive. This study illustrates that seasonal demographic responses need disentangling to accurately forecast the impacts of climate change on animal population dynamics.


2020 ◽  
Vol 119 (10) ◽  
pp. 3401-3413
Author(s):  
Peter A. Seeber ◽  
Tetiana A. Kuzmina ◽  
Alex D. Greenwood ◽  
Marion L. East

Abstract In wildlife, endoparasite burden can be affected by host life history stage, environmental conditions, host abundance, and parasite co-infections. We tested the effects of these factors on gastrointestinal parasite infection in plains zebras (Equus quagga) in the Serengeti ecosystem, Tanzania, using fecal egg counts of two nematode families (Strongylidae and Ascarididae) and the presence/absence of cestode (Anoplocephalidae) eggs. We predicted higher egg counts of Strongylidae and Ascarididae, and increased likelihood of Anoplocephalidae infection in individuals (1) during energetically costly life history stages when resource allocation to immune processes may decrease and in young zebras after weaning because of increased uptake of infective stages with forage, (2) when climatic conditions facilitate survival of infective stages, (3) when large zebra aggregations increase forage contamination with infective stages, and (4) in individuals co-infected with more than one parasite group as this may indicate reduced immune competence. Strongylidae egg counts were higher, and the occurrence of Anoplocephalidae eggs was more likely in bachelors than in band stallions, whereas Ascarididae egg counts were higher in band stallions. Strongylidae and Ascarididae egg counts were not increased in lactating females. Strongylidae egg counts were higher in subadults than in foals. Regardless of sex and age, Ascarididae infections were more likely under wet conditions. Co-infections did not affect Strongylidae egg counts. Ascarididae egg counts in adult females were higher when individuals were co-infected with Anoplocephalidae. We present evidence that parasite burdens in plains zebras are affected by life history stage, environmental conditions, and co-infection.


Sign in / Sign up

Export Citation Format

Share Document