Using the value of the crosscorrelation coefficient to locate microseismic events

Geophysics ◽  
2010 ◽  
Vol 75 (4) ◽  
pp. MA47-MA52 ◽  
Author(s):  
J. Kummerow

A procedure to locate seismic events uses the value of the crosscorrelation coefficient between waveforms of different events. First, an empirical relation between spatial event separation and maximum crosscorrelation coefficient is established for a subset of a priori located reference events. Then this relation is used to determine the hypocenters of an increasing number of events by a grid-search strategy. Measured arrival-time differences between S- and P-waves also constrain the location. Although the reference events are located by a standard method using the arrival-time measurements at three or more receivers, the correlation-based location requires only one receiver. The method has been applied to microseismic data recorded at a single borehole sensor during the 2004/05 injection experiment at the Continental Deep Drilling Site (KTB) in Germany. With the approach, significantly more weak seismic events were located, compared to the number of events recorded by a near-surface receiver array and by inversion of arrival times. The proposed location method is particularly well suited to locate small-magnitude earthquakes within dense event clouds when too few arrival-time observations for part of the events are available and standard location methods fail. These conditions are frequently met in the case of microseismic monitoring of geothermal or enhanced oil recovery experiments.


Geophysics ◽  
2015 ◽  
Vol 80 (1) ◽  
pp. KS1-KS9 ◽  
Author(s):  
Oksana Zhebel ◽  
Leo Eisner

Microseismic monitoring has become a tool of choice for the development and optimization of oil and gas production from unconventional reservoirs. The primary objective of (micro) seismic monitoring includes localization of (micro) seismic events and characterization of their source mechanisms. Most seismic events are of a nonexplosive nature, and thus, there are waveform (polarity) differences among receivers. Specifically, double-couple sources represented a challenge for migration-based localization techniques. We developed and applied a new migration-type location technique combined with source mechanism inversion that allowed for constructive interference of signal in seismic waveforms. The procedure included constructing image functions by stacking the amplitudes with compensated polarity changes. The compensation weights were calculated by using moment tensor inversion. This method did not require any picking of arrivals at individual receivers, but it required receivers to be distributed in multiple azimuths and offsets. This made the technique suitable for surface or near-surface monitoring, in which a low signal-to-noise ratio (S/N) can be overcome by stacking. Furthermore, the advantage of this technique was that in addition to the position in time and space, we also determined the source mechanism. We determined with numerical tests that the proposed technique can be used for detection and location of events with S/Ns as low as 0.05 at individual (prestacked) receivers. Furthermore, we found that other source mechanism parameters such as magnitude, volumetric, or shear components of the source mechanism were not suitable for the location. Finally, we applied the proposed technique to a microseismic event of moment magnitude [Formula: see text] induced during the hydraulic fracturing treatment of a gas shale reservoir in North America.



Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. U65-U76
Author(s):  
Ivan Abakumov ◽  
Aurelian Roeser ◽  
Serge A. Shapiro

Traveltime-based methods depend on the accurate determination of the arrival times of seismic waves. They further benefit from information on the uncertainty with which the arrival times are determined. Among other applications, arrival-time uncertainties are used to weight data in inversion algorithms and to define the resolution of reconstructed velocity models. The most physically meaningful approaches for the estimation of arrival-time uncertainties are based on probabilistic formulations. The two approaches for the assessment of the lower bound of arrival-time uncertainties, the Cramér–Rao Bound (CRB) and the Ziv–Zakai Bound (ZZB), have been reviewed. The CRB determines the minimum-achievable estimation error under the assumption of a high signal-to-noise ratio (S/N) but underestimates said error for small S/N. The ZZB provides a better result for noisy data because it utilizes a priori information. The CRB and ZZB require knowledge of the spectral variance of the signal, which often is hard to determine in seismic experiments. Furthermore, both bounds assume additive white Gaussian noise (AWGN), which does not hold for seismic data. To overcome these problems, alternative expressions have been proposed, which yield comparable estimates as CRB and ZZB but are solely based on the S/N and the dominant period in the data. Moreover, a recipe to correct the S/N and account for the difference between the seismic noise and AWGN has been provided. For a case study of downhole microseismic monitoring, it is determined that the new expressions provide station-dependent arrival-time uncertainties, which are used as weights to improve source location uncertainties.



2016 ◽  
Vol 19 (02) ◽  
pp. 265-277 ◽  
Author(s):  
Dongjae Kam ◽  
Akhil Datta-Gupta

Summary Traditional history matching involves calibration of reservoir models by use of well response such as production or tracer data aggregated during multiple producing intervals. With the advent of novel tracer technologies, we now can obtain distributed water or tracer arrival-time information along the length of horizontal or vertical wellbores. This provides significantly improved flow resolution for detailed reservoir characterization through inversion of distributed water or tracer arrival times in a manner analogous to travel tomography in geophysics. In this paper, we present an efficient approach to incorporate novel tracer-surveillance data and distributed water arrival-time information during history matching of high-resolution reservoir models. Our approach relies on a streamline-based work flow that analytically computes the sensitivity of water-arrival times with respect to reservoir heterogeneity, specifically porosity and permeability variations. The sensitivities relate the changes in arrival time to small perturbations in reservoir properties and can be obtained efficiently with the streamline-based approach with a single flow simulation. This makes the approach particularly well-suited for high-resolution reservoir characterization. Finally, the sensitivities are used in conjunction with an iterative inversion algorithm to update the reservoir models with existing and proven techniques from seismic tomography. The power and utility of our proposed approach are demonstrated with both synthetic and field examples. These include the SPE benchmark Brugge field case and an offshore field in North America. Compared with traditional history-matching techniques, the proposed tomographic approach is shown to result in improved resolution of heterogeneity through matching of water-arrival time at individual completions in addition to the aggregated well-production response. This results in improved performance predictions and better identification of bypassed oil for infill targeting and enhanced-oil-recovery (EOR) applications.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sherif M. Hanafy ◽  
Hussein Hoteit ◽  
Jing Li ◽  
Gerard T. Schuster

AbstractResults are presented for real-time seismic imaging of subsurface fluid flow by parsimonious refraction and surface-wave interferometry. Each subsurface velocity image inverted from time-lapse seismic data only requires several minutes of recording time, which is less than the time-scale of the fluid-induced changes in the rock properties. In this sense this is real-time imaging. The images are P-velocity tomograms inverted from the first-arrival times and the S-velocity tomograms inverted from dispersion curves. Compared to conventional seismic imaging, parsimonious interferometry reduces the recording time and increases the temporal resolution of time-lapse seismic images by more than an order-of-magnitude. In our seismic experiment, we recorded 90 sparse data sets over 4.5 h while injecting 12-tons of water into a sand dune. Results show that the percolation of water is mostly along layered boundaries down to a depth of a few meters, which is consistent with our 3D computational fluid flow simulations and laboratory experiments. The significance of parsimonious interferometry is that it provides more than an order-of-magnitude increase of temporal resolution in time-lapse seismic imaging. We believe that real-time seismic imaging will have important applications for non-destructive characterization in environmental, biomedical, and subsurface imaging.



2015 ◽  
Vol 8 (2) ◽  
pp. 941-963 ◽  
Author(s):  
T. Vlemmix ◽  
F. Hendrick ◽  
G. Pinardi ◽  
I. De Smedt ◽  
C. Fayt ◽  
...  

Abstract. A 4-year data set of MAX-DOAS observations in the Beijing area (2008–2012) is analysed with a focus on NO2, HCHO and aerosols. Two very different retrieval methods are applied. Method A describes the tropospheric profile with 13 layers and makes use of the optimal estimation method. Method B uses 2–4 parameters to describe the tropospheric profile and an inversion based on a least-squares fit. For each constituent (NO2, HCHO and aerosols) the retrieval outcomes are compared in terms of tropospheric column densities, surface concentrations and "characteristic profile heights" (i.e. the height below which 75% of the vertically integrated tropospheric column density resides). We find best agreement between the two methods for tropospheric NO2 column densities, with a standard deviation of relative differences below 10%, a correlation of 0.99 and a linear regression with a slope of 1.03. For tropospheric HCHO column densities we find a similar slope, but also a systematic bias of almost 10% which is likely related to differences in profile height. Aerosol optical depths (AODs) retrieved with method B are 20% high compared to method A. They are more in agreement with AERONET measurements, which are on average only 5% lower, however with considerable relative differences (standard deviation ~ 25%). With respect to near-surface volume mixing ratios and aerosol extinction we find considerably larger relative differences: 10 ± 30, −23 ± 28 and −8 ± 33% for aerosols, HCHO and NO2 respectively. The frequency distributions of these near-surface concentrations show however a quite good agreement, and this indicates that near-surface concentrations derived from MAX-DOAS are certainly useful in a climatological sense. A major difference between the two methods is the dynamic range of retrieved characteristic profile heights which is larger for method B than for method A. This effect is most pronounced for HCHO, where retrieved profile shapes with method A are very close to the a priori, and moderate for NO2 and aerosol extinction which on average show quite good agreement for characteristic profile heights below 1.5 km. One of the main advantages of method A is the stability, even under suboptimal conditions (e.g. in the presence of clouds). Method B is generally more unstable and this explains probably a substantial part of the quite large relative differences between the two methods. However, despite a relatively low precision for individual profile retrievals it appears as if seasonally averaged profile heights retrieved with method B are less biased towards a priori assumptions than those retrieved with method A. This gives confidence in the result obtained with method B, namely that aerosol extinction profiles tend on average to be higher than NO2 profiles in spring and summer, whereas they seem on average to be of the same height in winter, a result which is especially relevant in relation to the validation of satellite retrievals.



Geophysics ◽  
1951 ◽  
Vol 16 (1) ◽  
pp. 63-80 ◽  
Author(s):  
Milton B. Dobrin

A non‐mathematical summary is presented of the published theories and observations on dispersion, i.e., variation of velocity with frequency, in surface waves from earthquakes and in waterborne waves from shallow‐water explosions. Two further instances are cited in which dispersion theory has been used in analyzing seismic data. In the seismic refraction survey of Bikini Atoll, information on the first 400 feet of sediments below the lagoon bottom could not be obtained from ground wave first arrival times because shot‐detector distances were too great. Dispersion in the water waves, however, gave data on speed variations in the bottom sediments which made possible inferences on the recent geological history of the atoll. Recent systematic observations on ground roll from explosions in shot holes have shown dispersion in the surface waves which is similar in many ways to that observed in Rayleigh waves from distant earthquakes. Classical wave theory attributes Rayleigh wave dispersion to the modification of the waves by a surface layer. In the case of earthquakes, this layer is the earth’s crust. In the case of waves from shot‐holes, it is the low‐speed weathered zone. A comparison of observed ground roll dispersion with theory shows qualitative agreement, but it brings out discrepancies attributable to the fact that neither the theory for liquids nor for conventional solids applies exactly to unconsolidated near‐surface rocks. Additional experimental and theoretical study of this type of surface wave dispersion may provide useful information on the properties of the surface zone and add to our knowledge of the mechanism by which ground roll is generated in seismic shooting.



1982 ◽  
Vol 72 (3) ◽  
pp. 779-792
Author(s):  
J. D. Achenbach ◽  
A. Norris ◽  
K. Viswanathan

abstract The inverse problem of diffraction of elastic waves by the edge of a large crack has been investigated on the basis of elastodynamic ray theory and the geometrical theory of diffraction. Two methods are discussed for the mapping of the edge of a crack-like flaw in an elastic medium. The methods require as input data the arrival times of diffracted ultrasonic signals. The first method maps flash points on the crack edge by a process of triangulation with the source and receiver as given vertices of the triangle. By the use of arrival times at neighboring positions of the source and/or the receiver, the directions of signal propagation, which determine the triangle, can be computed. This inverse mapping is global in the sense that no a priori knowledge of the location of the crack edge is necessary. The second method is a local edge mapping which determines planes relative to a known point close to the crack edge. Each plane contains a flash point. The envelope of the planes maps an approximation to the crack edge. The errors due to inaccuracies in the input data and in the computational procedure have been illustrated by specific examples.



2021 ◽  
Author(s):  
Andre Pugin ◽  
Barbara Dietiker ◽  
Kevin Brewer ◽  
Timothy Cartwright

<p>In the vicinity of Ottawa, Ontario, Canada, we have recorded many multicomponent seismic data sets using an in-house multicom­ponent vibrator source named Microvibe and a landstreamer receiver array with 48 3-C 28-Hz geophones at 0.75-m intervals. The receiver spread length was 35.25 m, and the near-offset was 1.50 m. We used one, two or three source and three receiver orientations — vertical (V), inline-horizontal (H1), and transverse-horizontal (H2). We identified several reflection wave modes in the field records — PP, PS, SP, and SS, in addition to refracted waves, and Rayleigh-mode and Love-mode surface waves. We computed the semblance spectra of the selected shot records and ascertained the wave modes based on the semblance peaks. We then performed CMP stacking of each of the 9-C data sets using the PP and SS stacking velocities to compute PP and SS reflection profiles.</p><p>Despite the fact that any source type can generate any combination of wave modes — PP, PS, SP, and SS, partitioning of the source energy depends on the source orientation and VP/VS ratio. Our examples demonstrate that the most prominent PP reflection energy is recorded by the VV source-receiver orientation, whereas the most prominent SS reflection energy is recorded by the H2H2 source-receiver orientation with possibility to obtain decent shear wave near surface data in all other vibrating and receiving directions.</p><p>Pugin, Andre and Yilmaz, Öz, 2019. Optimum source-receiver orientations to capture PP, PS, SP, and SS reflected wave modes. The Leading Edge, vol. 38/1, p. 45-52. https://doi.org/10.1190/tle38010045.1</p>



Author(s):  
Maria Mesimeri ◽  
Kristine L. Pankow ◽  
James Rutledge

ABSTRACT We propose a new frequency-domain-based algorithm for detecting small-magnitude seismic events using dense surface seismic arrays. Our proposed method takes advantage of the high energy carried by S waves, and approximate known source locations, which are used to rotate the horizontal components to obtain the maximum amplitude. By surrounding the known source area with surface geophones, we achieve a favorable geometry for locating the detected seismic events with the backprojection method. To test our new detection method, we used a dense circular array, consisting of 151 5 Hz three-component geophones, over a 5 km aperture that was in operation at the Utah Frontier Observatory for Research in Geothermal Energy (FORGE) in southcentral Utah. We apply the new detection method during a small-scale test injection phase at FORGE, and during an aftershock sequence of an Mw 4.1 earthquake located ∼30  km north of the geophone array, within the Black Rock volcanic field. We are able to detect and locate microseismic events (Mw<0) during injections, despite the high level of anthropogenic activity, and several aftershocks that are missing from the regional catalog. By comparing our method with known algorithms that operate both in the time and frequency domain, we show that our proposed method performs better in the case of the FORGE injection monitoring, and equally well for the off-array aftershock sequence. Our new method has the potential to improve microseismic event detections even in extremely noisy environments, and the proposed location scheme serves as a direct discriminant between true and false detections.



2017 ◽  
Vol 10 (11) ◽  
pp. 4403-4419 ◽  
Author(s):  
Joshua L. Laughner ◽  
Ronald C. Cohen

Abstract. Space-borne measurements of tropospheric nitrogen dioxide (NO2) columns are up to 10x more sensitive to upper tropospheric (UT) NO2 than near-surface NO2 over low-reflectivity surfaces. Here, we quantify the effect of adding simulated lightning NO2 to the a priori profiles for NO2 observations from the Ozone Monitoring Instrument (OMI) using modeled NO2 profiles from the Weather Research and Forecasting–Chemistry (WRF-Chem) model. With observed NO2 profiles from the Deep Convective Clouds and Chemistry (DC3) aircraft campaign as observational truth, we quantify the bias in the NO2 column that occurs when lightning NO2 is not accounted for in the a priori profiles. Focusing on late spring and early summer in the central and eastern United States, we find that a simulation without lightning NO2 underestimates the air mass factor (AMF) by 25 % on average for common summer OMI viewing geometry and 35 % for viewing geometries that will be encountered by geostationary satellites. Using a simulation with 500 to 665 mol NO flash−1 produces good agreement with observed NO2 profiles and reduces the bias in the AMF to  <  ±4 % for OMI viewing geometries. The bias is regionally dependent, with the strongest effects in the southeast United States (up to 80 %) and negligible effects in the central US. We also find that constraining WRF meteorology to a reanalysis dataset reduces lightning flash counts by a factor of 2 compared to an unconstrained run, most likely due to changes in the simulated water vapor profile.



Sign in / Sign up

Export Citation Format

Share Document