Improvement of immune response after radiofrequency ablation in colorectal cancer.

2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 102-102 ◽  
Author(s):  
Katia Lemdani ◽  
Nathalie Mignet ◽  
Johanne Seguin ◽  
Frederique Peschaud ◽  
Jean-François Emile ◽  
...  

102 Background: Radiofrequency ablation (RFA) efficiency of liver tumors is compromised by high rates of relapse. Death of cancer cells by hyperthermia induced tumor antigen releasing, expression of danger signals that activate a specific T-cell response. This effect is ineffective to avoid recurrence. We propose to combine RFA with priming of a strong immune antitumor response as curative treatment of an aggressive colorectal cancer (CRC) in immunocompetent mouse. Methods: RFA was used to treat a CT26- luc tumor as primary lesion. In two distinct clinical situations, macroscopic or microscopic distant tumors were established as secondary lesions. The immune response was modulated by the injection, in the treated area, of a thermo-reversible hydrogel loaded by GM-CSF and BCG, targeting recruitment and maturation of dendritic cells. In mice with far large lesions, this strategy was combined with PD1checkpoint inhibition. The efficiency was assessed on survival, evolution of distant lesions, characterization of tumoral lymphocyte infiltration TNF-α and IFN-y expression in peripheral T lymphocytes. Results: The in situ immunogel injection after RFA resulted in prolonged survival of mice. Regression of distant lesions was related to the induction of a strong systemic antitumor immune response and a great improvement of tumor infiltration by CD3+ T lymphocytes. In adjuvant situation, the use of immunogel induced a complete cure of microscopic secondary lesions without another treatment. Immune escape of large secondary lesions was reversed by association of the RFA-immunogel vaccination with a systemic immune checkpoint inhibition, separately ineffective. Conclusions: Validation of this strategy, combining RFA of macroscopic lesions and activation of a strong immune response controlling the residual disease, could result in the design of a clinical assay including this approach within a standard treatment of colorectal liver metastases. The synergy between in situ immunomodulation as priming process and checkpoint blockade, ineffective alone in metastatic microsatellite stable CRC or after single RFA, allows reconsidering the use of checkpoint inhibitors in CRC.

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14540-e14540
Author(s):  
Katia Lemdani ◽  
Claude Capron ◽  
Johanne Seguin ◽  
Nathalie Mignet ◽  
Vincent Boudy ◽  
...  

e14540 Background: Results of radiofrequency ablation (RFA), increasingly used to treat liver tumors, are compromised by local and systemic relapse. Hyperthermia related cancer cells death, release of tumor antigens and expression of danger signals activate a tumor-specific T-cells response. This effect remains ineffective to avoid recurrence. Therefore we propose to combine RFA with an activation of a solid immune antitumor response as curative treatment of a colorectal (CRC) metastatic disease in immunocompetent mouse. Methods: RFA was used to treat a CT26- luc tumor. In two distinct clinical situations, distant macroscopic or microscopic tumors were established as metastases before or at the time of RFA. Immune response was modulated by an injection in situof a thermo-reversible hydrogel loaded by GM-CSF and BCG, targeting dendritic cells. In the group of mice with large far lesions this strategy was combined with immune checkpoint inhibition. The efficiency was assessed on survival, evolution of distant lesions, characterization of lymphocyte infiltration in tumors and systemic immunity through specific TNF- α and IFN-y expression in spleen and draining lymph nodes. Results: The in situ immunogel injection after RFA resulted in a prolonged survival of mice. Regression of distant lesions was related to a strong systemic antitumor immune response and a great improvement of tumor infiltration by specific cytotoxic lymphocytes. In adjuvant situation, the use of immunogel induced a complete cure of microscopic secondary lesions without any treatment. Immune escape of large secondary lesions was reversed by association of RFA-immunogel vaccination with a systemic check point blockade, separately ineffective. Conclusions: Validation of this strategy, combining RFA of liver metastases and activation of a strong immune response controlling the residual disease, could result in a clinical assay including this approach within the standard treatment of CRC. Furthermorethe powerful synergy between RFA-in situ immunomodulation as a starter treatment and checkpoint blockade ineffective alone in CRC or after single RFA, allows reconsidering the use of immune checkpoint inhibitors in metastatic microsatellite stable CRC.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Linda Bilonda Mutala ◽  
Cécile Deleine ◽  
Matilde Karakachoff ◽  
Delphine Dansette ◽  
Kathleen Ducoin ◽  
...  

In colorectal cancer (CRC), a high density of T lymphocytes represents a strong prognostic marker in subtypes of CRC. Optimized immunotherapy strategies to boost this T-cell response are still needed. A good candidate is the inflammasome pathway, an emerging player in cancer immunology that bridges innate and adaptive immunity. Its effector protein caspase-1 matures IL-18 that can promote a T-helper/cytotoxic (Th1/Tc1) response. It is still unknown whether tumor cells from CRC possess a functional caspase-1/IL-18 axis that could modulate the Th1/Tc1 response. We used two independent cohorts of CRC patients to assess IL-18 and caspase-1 expression by tumor cells in relation to the density of TILs and the microsatellite status of CRC. Functional and multiparametric approaches at the protein and mRNA levels were performed on an ex vivo CRC explant culture model. We show that, in the majority of CRCs, tumor cells display an activated and functional caspase-1/IL-18 axis that contributes to drive a Th1/Tc1 response elicited by TILs expressing IL-18Rα. Furthermore, unsupervised clustering identified three clusters of CRCs according to the caspase-1/IL-18/TIL density/interferon gamma (IFNγ) axis and microsatellite status. Together, our results strongly suggest that targeting the caspase-1/IL-18 axis can improve the anti-tumor immune response in subgroups of CRC.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 194
Author(s):  
Jutta Ries ◽  
Abbas Agaimy ◽  
Falk Wehrhan ◽  
Christoph Baran ◽  
Stella Bolze ◽  
...  

Background: The programmed cell death ligand 1/programmed cell death receptor 1 (PD-L1/PD-1) Immune Checkpoint is an important modulator of the immune response. Overexpression of the receptor and its ligands is involved in immunosuppression and the failure of an immune response against tumor cells. PD-1/PD-L1 overexpression in oral squamous cell carcinoma (OSCC) compared to healthy oral mucosa (NOM) has already been demonstrated. However, little is known about its expression in oral precancerous lesions like oral leukoplakia (OLP). The aim of the study was to investigate whether an increased expression of PD-1/PD-L1 already exists in OLP and whether it is associated with malignant transformation. Material and Methods: PD-1 and PD-L1 expression was immunohistologically analyzed separately in the epithelium (E) and the subepithelium (S) of OLP that had undergone malignant transformation within 5 years (T-OLP), in OLP without malignant transformation (N-OLP), in corresponding OSCC and in NOM. Additionally, RT-qPCR analysis for PD-L1 expression was done in the entire tissues. Additionally, the association between overexpression and malignant transformation, dysplasia and inflammation were examined. Results: Compared to N-OLP, there were increased levels of PD-1 protein in the epithelial and subepithelial layers of T-OLP (pE = 0.001; pS = 0.005). There was no significant difference in PD-L1 mRNA expression between T-OLP and N-OLP (p = 0.128), but the fold-change increase between these groups was significant (Relative Quantification (RQ) = 3.1). In contrast to N-OLP, the PD-L1 protein levels were significantly increased in the epithelial layers of T-OLP (p = 0.007), but not in its subepithelial layers (p = 0.25). Importantly, increased PD-L1 levels were significantly associated to malignant transformation within 5 years. Conclusion: Increased levels of PD-1 and PD-L1 are related to malignant transformation in OLP and may represent a promising prognostic indicator to determine the risk of malignant progression of OLP. Increased PD-L1 levels might establish an immunosuppressive microenvironment, which could favor immune escape and thereby contribute to malignant transformation. Hence, checkpoint inhibitors could counteract tumor development in OLP and may serve as efficient therapeutic strategy in patients with high-risk precancerous lesions.


2019 ◽  
Author(s):  
Gregor Serša

Electroporation has several biomedical and industrial applications. The biomedical applications are in the field of drug or gene delivery. Electrochemotherapy utilizes electroporation for the increased delivery of cytotoxic drugs like bleomycin or cisplatin into tumors. The use of electrochemotherapy has spread throughout Europe for the treatment of cutaneous tumors or metastases. It is in the NICE guidelines and is becoming standard ablative technique in treatment of cancer. The technological advancements have also enabled the use of electrochemotherapy for the treatment of deep seated tumors, such as soft tissue or liver tumors. Clinical studies demonstrate good effectiveness on fibrosarcomas, colorectal liver metastases and hepatocellular carcinoma. However, electrochemotherapy is a local treatment that also induces moderate local immune response. This so called “in situ vaccination” induced by electrochemotherapy can be exploited in combined treatment with immune checkpoint inhibitors or electrogene therapy with immunostimulating effect. Therefore, gene electrotransfer of plasmid coding for interleukin 12 (IL-12), in combination with electrochemotherapy could result in transformation of electrochemotherapy from local into systemic treatment. This is also of our current interest, and we are undertaking steps to bring this idea from preclinical into clinical testing.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A880-A880
Author(s):  
Abigail Overacre-Delgoffe ◽  
Hannah Bumgarner ◽  
Anthony Cillo ◽  
Ansen Burr ◽  
Justin Tometich ◽  
...  

BackgroundColorectal cancer (CRC) is one of the most common and deadly cancers in the US, and the survival rate for advanced cases is poor. While immunotherapy has revolutionized cancer treatment, CRC remains largely unresponsive, with only ~6% of patients responding to anti-PD1. Specific microbiome signatures are associated with anti-PD1 response in melanoma patients; however, the underlying mechanism remains unclear. While the microbiome in cancer patients has been extensively studied, the endogenous immune response to these microbes and the subsequent effects on cancer immunity remain unstudied. Most microbes reside within the gut, and bacteria that adhere to the intestinal epithelium can stimulate bacteria-specific immune responses. Therefore, we hypothesized that the microbiome, especially adherent, immunogenic bacteria, may support anti-tumor immunity through activation of local microbiota-specific T cells.MethodsUsing a carcinogen-induced mouse model of CRC, we sought to determine the impact of microbiome modulation on the anti-tumor immune response. We colonized tumor-bearing mice with Helicobacter hepaticus (Hhep) and assessed tumor burden, survival, and immune infiltration. Lymphocytes were isolated from the tumor and surrounding tissue when tumors were terminal (12 weeks). We utilized TCR transgenic mice and MHC class II tetramers to track the spatial and transcriptional Hhep-specific T cell response through 5’ single cell RNAseq, flow cytometry, and spectral immunofluorescence.ResultsHhep colonization in tumor-bearing mice led to decreased tumor burden and significantly improved survival. Interestingly, colonization induced activation of Hhep-specific T follicular helper cells (TFHs) that supported formation of mature peri- or intra-tumoral tertiary lymphoid structures (TLS). The presence of TLS led to increased infiltration of cytotoxic lymphocytes (T and NK cells) within the tumor core. Surprisingly, the anti-tumor response was dependent on CD4+ T and B cells but not CD8+ T cells. Using TFH KO mice, we found that Hhep-specific CD4+ T cells were both necessary and sufficient to drive TLS maturation and anti-tumor immunity.ConclusionsHere, we demonstrate that addition of a single bacterial species after tumor formation leads to a reduction in CRC tumor burden and increased survival through TLS maturation. This microbiome-dependent remodeling of the tumor microenvironment is driven by Hhep-specific TFH cells that are both necessary and sufficient for tumor control, demonstrating for the first time that microbiota-specific T cells contribute to anti-tumor immunity. Overall, these findings suggest that microbiome modulation and the subsequent microbiota-specific CD4+ T cell response may represent a new variety of immunotherapies for cancers that remain resistant to checkpoint blockade.


2018 ◽  
Vol 19 (12) ◽  
pp. 3793 ◽  
Author(s):  
Mathieu Césaire ◽  
Juliette Thariat ◽  
Serge M. Candéias ◽  
Dinu Stefan ◽  
Yannick Saintigny ◽  
...  

Immunotherapy has revolutionized the practice of oncology, improving survival in certain groups of patients with cancer. Immunotherapy can synergize with radiation therapy, increase locoregional control, and have abscopal effects. Combining it with other treatments, such as targeted therapies, is a promising means of improving the efficacy of immunotherapy. Because the value of immunotherapy is amplified with the expression of tumor antigens, coupling poly(ADP-ribose) polymerase (PARP) inhibitors and immunotherapy might be a promising treatment for cancer. Further, PARP inhibitors (PARPis) are being combined with radiation therapy to inhibit DNA repair functions, thus enhancing the effects of radiation; this association might interact with the antitumor immune response. Cytotoxic T lymphocytes are central to the antitumor immune response. PARP inhibitors and ionizing radiation can enhance the infiltration of cytotoxic T lymphocytes into the tumor bed, but they can also enhance PD-1/PDL-1 expression. Thus, the addition of immune checkpoint inhibitors with PARP inhibitors and/or ionizing radiation could counterbalance such immunosuppressive effects. With the present review article, we proposed to evaluate some of these associated therapies, and we explored the biological mechanisms and medical benefits of the potential combination of radiation therapy, immunotherapy, and PARP inhibitors.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 247 ◽  
Author(s):  
Kumar Jayant ◽  
Nagy Habib ◽  
Kai W. Huang ◽  
Mauro Podda ◽  
Jane Warwick ◽  
...  

A majority of hepatocellular carcinoma (HCC) develops in the setting of persistent chronic inflammation as immunological mechanisms have been shown to play a vital role in the initiation, growth and progression of tumours. The index review has been intended to highlight ongoing immunological changes in the hepatic parenchyma responsible for the genesis and progression of HCC. The in-situ vaccine effect of radiofrequency (RF) is through generation tumour-associated antigens (TAAs), following necrosis and apoptosis of tumour cells, which not only re-activates the antitumour immune response but can also act in synergism with checkpoint inhibitors to generate a superlative effect with intent to treat primary cancer and distant metastasis. An improved understanding of oncogenic responses of immune cells and their integration into signaling pathways of the tumour microenvironment will help in modulating the antitumour immune response. Finally, we analyzed contemporary literature and summarised the recent advances made in the field of targeted immunotherapy involving checkpoint inhibitors along with RF application with the intent to reinstate antitumour immunity and outline future directives in very early and early stages of HCC.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e23087-e23087
Author(s):  
Anne Jarry ◽  
Adrien Ouairy ◽  
Delphine Dansette ◽  
Cécile Deleine ◽  
Nicolas Jouand ◽  
...  

e23087 Background: In colorectal cancer (CRC), little is known about mechanisms by which tumor cells can influence the phenotype and biology of Tumor Infiltrating T lymphocytes (TILs) of the tumor microenvironment. One of these mechanisms could be the inflammasome, a molecular platform present in normal intestinal epithelial cells, whose effector protein, caspase-1, can rapidly mature IL18 and generate a mucosal Th1/Tc1 (IFNγ) response. However, the inflammasome status of tumor cells in CRC and its potential role on TILs are unknown yet. Methods: Prospective and retrospective cohort studies aimed to determine in CRC patients: the status of the inflammasome in tumor cells (IL18 immunostaining on tissue microarrays (TMA) and in situ detection of active caspase-1 on frozen sections) and the density of TILs (CD8+, T-bet+) in relation with i) the microsatellite stable (MSS) or unstable (MSI) status of CRC, and ii) the levels of cytokines (IL18, IFNγ) secreted in an ex vivo explant culture model of CRC. Finally, we assessed the effect of recombinant human IL18 (rhIL18) on the IFNγ response of isolated TILs. Results: TMA analysis of the retrospective cohort showed that IL18 was significantly expressed (in more than 50% of tumor cells) in 80% of CRC, especially in MSI CRC, and correlated with a high density of T-bet+ and CD8+ intraepithelial TILs (IEL-TILs). Active caspase-1 was detected in tumor cells in 60% of CRC. In the prospective cohort, the presence of active caspase-1 in tumor cells was associated with high levels of mature IL18 secreted in explant cultures, with high density of T-bet+ TILs and with IFNγ release in most cases. In addition, isolated TILs expressing IL18 receptors (IL18Rα), cultured with rhIL18, were able to secrete IFNγ either unstimulated or stimulated with OKT3. Conclusions: The inflammasome of tumor cells, when maintained and active, can contribute to a Th1/Tc1 antitumor immune response elicited by TILs, that can modulate tumor growth. The inflammasome of tumor cells can thus be considered as a potential new therapeutic target to strengthen the antitumor immune response in CRC, in association with other immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document