The difference of the gut microbiota of gastric cancer in relation to Helicobacter pylori negativity and positivity.

2019 ◽  
Vol 37 (4_suppl) ◽  
pp. 10-10
Author(s):  
Mijin Seol ◽  
Yu Ra Lee ◽  
Kyung Mi Kim ◽  
Cheol Min Shin ◽  
Hyuk Yoon ◽  
...  

10 Background: Helicobacter pylori (HP) is a major risk factor for gastric cancer, however, only 1-2% of HP(+) people develop adenocarcinoma. In this study, we have compared the intestinal microbiota composition related to HP status among gastric cancer patient using 16SrRNA gene-based metagenomic sequencing analysis and culture-based method. Methods: Stool samples were collected from 18 gastric cancer patients. 16S rRNA genes were sequenced on the Illumina Miseq platform and further analyzed to evaluate the gut bacterial community. The bacteria strains of fecal sample were isolated in aerobic and anaerobic condition. Results: Metagenomics analysis of fecal sample showed four major phyla; Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria were dominant. Firmicutes were the most dominant phylum. Within this phylum, the relative abundance of Clostridiales including Ruminococcus was higher in the HP(-) group, whereas Lactobacillales including streptococcus was higher in HP(+) group. In addition the relative abundance of Bacteroidetes in HP(-) group and Actinobacteria (especially, genus Bifidobacterium) in HP(+) group was observed highly. In the bacterial culture-based approach, bacteria strains belonged to Clostridiales such as Clostridium perfringens, Ruminococcus feacis, Blautia sp., Coprococcus comes were isolated in HP(-) sample. In HP(+) sample, Klebsiella, Bacteroides, Bifidobacterium were isolated. Bacillus species, Escherichia/Shigella was enriched regardless of HP exist. Streptococcus was not cultivated in HP(+) group, but isolated in HP(-) group in contrast with metagenome data. Conclusions: We found the intestinal bacterial diversity in the HP(+) group was lower than those in the HP(-) and the microbial composition was different between HP(+) and HP(-). Metagenome analysis showed the order Clostridiales of the phylum Firmicutes were enriched in the HP(-) group while the order Lactobacillales (specially, Streptococcus) were enriched in the HP(+) group. Compared to isolates between two groups, bacteria species belonged to the order Clostridiales such as Clostridium, Ruminococcus , Blautia , Coprococcus were cultivated particularly in HP(-) sample.

Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Liang Cui ◽  
Bitong Zhu ◽  
Xiaobo Zhang ◽  
Zhuhua Chan ◽  
Chungui Zhao ◽  
...  

The elevated NH3-N and NO2-N pollution problems in mariculture have raised concerns because they pose threats to animal health and coastal and offshore environments. Supplement of Marichromatium gracile YL28 (YL28) into polluted shrimp rearing water and sediment significantly decreased ammonia and nitrite concentrations, showing that YL28 functioned as a novel safe marine probiotic in the shrimp culture industry. The diversity of aquatic bacteria in the shrimp mariculture ecosystems was studied by sequencing the V4 region of 16S rRNA genes, with respect to additions of YL28 at the low and high concentrations. It was revealed by 16S rRNA sequencing analysis that Proteobacteria, Planctomycete and Bacteroidetes dominated the community (>80% of operational taxonomic units (OTUs)). Up to 41.6% of the predominant bacterial members were placed in the classes Gammaproteobacteria (14%), Deltaproteobacteria (14%), Planctomycetacia (8%) and Alphaproteobacteria (5.6%) while 40% of OTUs belonged to unclassified ones or others, indicating that the considerable bacterial populations were novel in our shrimp mariculture. Bacterial communities were similar between YL28 supplements and control groups (without addition of YL28) revealed by the β-diversity using PCoA, demonstrating that the additions of YL28 did not disturb the microbiota in shrimp mariculture ecosystems. Instead, the addition of YL28 increased the relative abundance of ammonia-oxidizing and denitrifying bacteria. The quantitative PCR analysis further showed that key genes including nifH and amoA involved in nitrification and nitrate or nitrite reduction significantly increased with YL28 supplementation (p < 0.05). The supplement of YL28 decreased the relative abundance of potential pathogen Vibrio. Together, our studies showed that supplement of YL28 improved the water quality by increasing the relative abundance of ammonia-oxidizing and denitrifying bacteria while the microbial community structure persisted in shrimp mariculture ecosystems.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yusuke Okazaki ◽  
Shohei Fujinaga ◽  
Michaela M. Salcher ◽  
Cristiana Callieri ◽  
Atsushi Tanaka ◽  
...  

Abstract Background Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. Results Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7–101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. Conclusions Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wenxia Wang ◽  
Songlin Huang ◽  
Liangliang Yang ◽  
Guogang Zhang

There are many and diverse intestinal microbiota, and they are closely related to various physiological functions of the body. They directly participate in the host's food digestion, nutrient absorption, energy metabolism, immune response, and many other physiological activities and are also related to the occurrence of many diseases. The intestinal microbiota are extremely important for maintaining normal physical health. In order to explore the composition and differences of the intestinal microbiota of whooper swans in different wintering areas, we collected fecal samples of whooper swans in Sanmenxia, Henan, and Rongcheng, Shandong, and we used the Illumina HiSeq platform to perform high-throughput sequencing of bacterial 16S rRNA genes. Comparison between Sanmenxia and Rongcheng showed no significant differences in ACE, Chao 1, Simpson, and Shannon indices (p &gt; 0.05). Beta diversity results showed significant differences in bacterial communities between two groups [analysis of similarity (ANOSIM): R = 0.80, p = 0.011]. Linear discriminant analysis effect size (LEfSe) analysis showed that at the phylum level, the relative abundance of Actinobacteria was significantly higher in Sanmenxia whooper swans than Rongcheng whooper swans. At the genus level, the amount of Psychrobacter and Carnobacterium in Sanmenxia was significantly higher in Rongcheng, while the relative abundance Catellicoccus and Lactobacillus was significantly higher in Rongcheng than in Sanmenxia. This study analyzed the composition, characteristics, and differences of the intestinal microbiota of the whooper swans in different wintering environments and provided theoretical support for further exploring the relationship between the intestinal microbiota of the whooper swans and the external environment. And it played an important role in the overwintering physiology and ecology, population management, and epidemic prevention and control of whooper swans.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8131
Author(s):  
Xiang Hong ◽  
Shenghao Fang ◽  
Kaiping Huang ◽  
Jiechen Yin ◽  
Jianshuang Chen ◽  
...  

Background Female sex workers (FSWs) are key groups in the transmission of sexual transmitted infections (STI), and vaginal microbiome variations play an important role in transmission. We aimed to explore the characteristics of vaginal microbiome among FSWs. Materials and Methods A total of 24 cross-border FSWs were randomly selected from a cross-sectional survey for female sex workers in southwest China. Thirty-seven female non-sex workers (FNSWs) were randomly selected from the gynecology clinic and health examination center. Vaginal swabs were collected, bacterial DNA extracted and 16S rRNA genes were sequenced. Differences in the vaginal microbiome between both groups were compared using bioinformatics analysis. Results One DNA sample was excluded due to unqualified concentration, therefore 60 samples were sequenced. FSWs had significantly different vaginal microbiota β diversity, but undifferentiated α diversity when compared with non-sex workers. The average relative abundance of Sneathia, Shigella, Neisseria, Chlamydia, Prevotella, Enterococcus and Ureaplasma among FSWs was higher than FNSWs, and relative abundance of Atopobium in FSWs was lower than FNSWs. The Lactobacillus genus was the major genus in both groups. At the species level, Lactobacllus crispatus, Lactobacllus gasseri and Lactobacllus jensenii, in female sex workers, were lower when compared to FNSWs. Conclusion There were distinct differences in vaginal bacteria variety between FSWs and FNSWs. Some disease-related genus were also more abundant in FSWs. Based on these observations, further research is required to identify microbiome communities related to high STI risks and other diseases in these cohorts.


Author(s):  
Mahasweta Laskar ◽  
Takuya Kasai ◽  
Takanori Awata ◽  
Arata Katayama

The utilization of extracellular electron transfer by microorganism is highly engaging for remediation of toxic pollutants under “energy-starved” conditions. Humin, an organo-mineral complex of soil, has been instrumental as an external electron mediator for suitable electron donors in the remediative works of reductive dehalogenation, denitrification, and so forth. Here, we report, for the first time, that humin assists microbial acetogenesis as the extracellular electron donor using the electron acceptor CO 2 . Humin was obtained from Kamajima paddy soil, Japan. The anaerobic acetogenic consortium in mineral medium containing CO 2 / HCO 3 − as the inorganic carbon source used suspended humin as the energy source under mesophilic dark conditions. Retardation of acetogenesis under the CO 2 -deficient conditions demonstrated that humin did not function as the organic carbon source but as electron donor in the CO 2 -reducing acetogenesis. The consortium with humin also achieved anaerobic dechlorination with limited methanogenic activity. Total electron-donating capacity of humin was estimated at about 87 µeeq/g-humin. The metagenomic sequencing of 16S rRNA genes showed the predominance of Firmicutes (71.8 ± 2.5%) in the consortium, and Lachnospiraceae and Ruminococcaceae were considered as the CO 2 -reducing acetogens in the consortium. Thus, microbial fixation of CO 2 using humin introduces new insight to the holistic approach for sustainable treatment of contaminants in environment.


2020 ◽  
Vol 96 (10) ◽  
Author(s):  
Bo Li ◽  
Zeng Chen ◽  
Fan Zhang ◽  
Yongqin Liu ◽  
Tao Yan

ABSTRACT Widespread occurrence of antibiotic resistance genes (ARGs) has become an important clinical issue. Studying ARGs in pristine soil environments can help to better understand the intrinsic soil resistome. In this study, 10 soil samples were collected from a high elevation and relatively pristine Tibetan area, and metagenomic sequencing and bioinformatic analyses were conducted to investigate the microbial diversity, the abundance and diversity of ARGs and the mobility potential of ARGs as indicated by different mobile genetic elements (MGEs). A total of 48 ARG types with a relative abundance of 0.05–0.28 copies of ARG/copy of 16S rRNA genes were detected in Tibetan soil samples. The observed ARGs were mainly associated with antibiotics that included glycopeptide and rifamycin; the most abundant ARGs were vanRO and vanSO. Low abundance of MGEs and potentially plasmid-related ARGs indicated a low horizontal gene transfer risk of ARGs in the pristine soil. Pearson correlation and redundancy analyses showed that temperature and total organic carbon were the major environmental factors controlling both microbial diversity and ARG abundance and diversity.


2019 ◽  
Vol 47 (10) ◽  
pp. 5037-5047
Author(s):  
Chen Yun ◽  
Li Zhiyan ◽  
Zhao Chong ◽  
Liu Jing ◽  
Zhang Xin ◽  
...  

Objective To analyze the pathogenic community diversity of dental caries patients from Tu, Hui, Tibetan, and Han Chinese ethnic groups. Methods Forty saliva samples were collected from the following patients with dental caries: Tu from Huzhu County (n = 10), Hui from Ping’an County (n = 10), Han from Xining city (n = 10), and Tibetan from Yushu (n = 10). High-throughput sequencing of bacterial 16S rRNA genes (V3-V4) was performed using the Illumina MiSeq sequencing platform. Results Based on 97% similarity clustering, operational taxonomic units of Tu, Hui, Tibetan, and Han ethnic groups were 181, 210, 38, and 67, respectively. In Tu patients, 11 phyla, 19 classes, and 89 genera were identified, compared with 13 phyla, 21 classes, and 113 genera in Hui patients, two phyla, four classes, and 21 genera in Tibetan patients, five phyla, nine classes, and 34 genera in Han patients, and four phyla, five classes, and 12 genera from the control group. The main pathogens of dental caries included Veillonella, Aggregatibacter, Leptotrichia, Bacteroides, Granulicatella, Streptococcus, and Prevotella. Conclusion The pathogenic microorganisms of dental caries differ greatly among Tu, Hui, Tibetan, and Han ethnic groups. These findings provide a theoretical basis for the effective prevention and treatment of dental caries in different Chinese populations.


2015 ◽  
Vol 81 (23) ◽  
pp. 8066-8075 ◽  
Author(s):  
David Emerson ◽  
Jarrod J. Scott ◽  
Joshua Benes ◽  
William B. Bowden

ABSTRACTThe role that neutrophilic iron-oxidizing bacteria play in the Arctic tundra is unknown. This study surveyed chemosynthetic iron-oxidizing communities at the North Slope of Alaska near Toolik Field Station (TFS) at Toolik Lake (lat 68.63, long −149.60). Microbial iron mats were common in submerged habitats with stationary or slowly flowing water, and their greatest areal extent is in coating plant stems and sediments in wet sedge meadows. Some Fe-oxidizing bacteria (FeOB) produce easily recognized sheath or stalk morphotypes that were present and dominant in all the mats we observed. The cool water temperatures (9 to 11°C) and reduced pH (5.0 to 6.6) at all sites kinetically favor microbial iron oxidation. A microbial survey of five sites based on 16S rRNA genes found a predominance ofProteobacteria, withBetaproteobacteriaand members of the familyComamonadaceaebeing the most prevalent operational taxonomic units (OTUs). In relative abundance, clades of lithotrophic FeOB composed 5 to 10% of the communities. OTUs related to cyanobacteria and chloroplasts accounted for 3 to 25% of the communities. Oxygen profiles showed evidence for oxygenic photosynthesis at the surface of some mats, indicating the coexistence of photosynthetic and FeOB populations. The relative abundance of OTUs belonging to putative Fe-reducing bacteria (FeRB) averaged around 11% in the sampled iron mats. Mats incubated anaerobically with 10 mM acetate rapidly initiated Fe reduction, indicating that active iron cycling is likely. The prevalence of iron mats on the tundra might impact the carbon cycle through lithoautotrophic chemosynthesis, anaerobic respiration of organic carbon coupled to iron reduction, and the suppression of methanogenesis, and it potentially influences phosphorus dynamics through the adsorption of phosphorus to iron oxides.


2021 ◽  
Vol 26 (3) ◽  
pp. 56-65
Author(s):  
Yu. G. Maksimova ◽  
◽  
G. V. Ovechkina ◽  
A. Yu. Maksimov ◽  
◽  
...  

Introduction. Bioaugmentation is an in situ bioremediation approach, which implies the introduction of a population of microorganisms with certain biodegrading abilities. Acrylamide is a biodegradable toxic substance. Our goal was to assess the survival of allochthonous bacterial cultures Alcaligenes faecalis 2 and Acinetobacter guillouiae 11h when introduced into river sludge and the efficiency of acrylamide decomposition by sludge with introduced amidase-containing bacteria. Methods. The microbiota of sludge from small rivers of Perm Territory was inoculated with the biomass of strains A. faecalis 2 and A. guillouiae 11h, which have amidase activity. In a laboratory experiment, we studied the survival of these bacteria as well as the biodegrading ability of the microbiota in relation to acrylamide after 3 and 6 months of incubation at 5 and 25°C. The transformation of acrylamide was assessed by HPLC, the biodiversity of river sludge was assessed by the method of metagenomic sequencing of 16S rRNA genes. Results. Incubation of sludge at 25°C for 3–6 months deteriorates the biodegrading abilities of the microbiota in relation to acrylamide, and the transformation of this pollutant occurs only during the augmentation of the biomass of amidase-containing bacteria, with acinetobacteria having an advantage over bacteria of Alcaligenes sp. Upon incubation of sludge at 25°C, the phylogenetic diversity increases, and the proportion of representatives of the phyla Actinobacteria, Chloroflexi, Ignavibacteriae, Candidatus Saccharibacteria, Acidobacteria increases as well, while the phylum Proteobacteria accounts for most of the bacterial biota in all samples, and the phylum Firmicutes accounts for 10–30%. The presence of representatives of Alcaligenes sp. and Acinetobacter sp. was confirmed in the microbiota of bioaugmented sludge after 6 months of incubation at 25°C. When incubated at 5°C, the microbiota of native sludge is capable of degrading acrylamide, but at a rate several times lower than during bioaugmentation. After incubation of Danilikha River sludge with the introduced biomass of strains A. guillouiae 11h and A. faecalis 2 at 5°C for 6 months, the complete transformation of acrylamide was observed in 4 and 20 days, respectively, with native sludge — in 35 days.


2013 ◽  
Vol 62 (4) ◽  
pp. 351-358
Author(s):  
Xueling Wu ◽  
Hong Duan ◽  
Hongwei Fan ◽  
Zhenzhen Zhang ◽  
Lili Liu

Comparative study of the genetic characteristics among three Acidithiobacillus caldus strains isolated from different typical environments in China was performed using a combination of molecular methods, namely sequencing analysis of PCR-amplified 16S rRNA genes and 16S-23S rRNA gene intergenic spacers (ITS), repetitive element PCR (rep-PCR), arbitrarily primed PCR (AP-PCR) fingerprinting and random amplified polymorphic DNA (RAPD). Both of the 16S rRNA gene and 16S-23S rRNA gene intergenic spacers sequences of the three strains exhibited small variations, with 99.9-100%, 99.7-100% identity respectively. In contrast, according to the analysis of bacterial diversity based on rep-PCR and AP-PCR fingerprinting, they produced highly discriminatory banding patterns, and the similarity values between them varied from 61.97% to 71.64%. RAPD analysis showed that banding profiles of their genomic DNA exhibited obvious differences from each other with 53.44-75% similarity. These results suggested that in contrast to 16S rRNA genes and 16S-23S rRNA gene intergenic spacers sequencing analysis, rep-PCR, AP-PCR fingerprinting and RAPD analysis possessed higher discriminatory power in identifying these closely related strains. And they could be used as rapid and highly discriminatory typing techniques in studying bacterial diversity, especially in differentiating bacteria within Acidithiobacillus caldus.


Sign in / Sign up

Export Citation Format

Share Document