Associations between plasma cytokine levels and gut microbiota composition in metastatic renal cell carcinoma (mRCC).

2021 ◽  
Vol 39 (6_suppl) ◽  
pp. 351-351
Author(s):  
Alex Chehrazi-Raffle ◽  
Nazli Dizman ◽  
Paulo Gustavo Bergerot ◽  
Misagh Karimi ◽  
Joann Hsu ◽  
...  

351 Background: Plasma cytokines and the gut microbiome have been shown separately to influence the response to systemic therapy in mRCC. We sought associations between serum cytokines and gut microbial composition in patients (pts) with mRCC. Methods: Eligibility requirements included histologically proven mRCC and an intent to receive either vascular endothelial growth factor-tyrosine kinase inhibitor (VEGF-TKI) or immune checkpoint inhibitor (ICI). Blood samples were collected prior to treatment initiation and immunologic profiles were evaluated using a Human Cytokine 30-plex protein assay (Invitrogen). Stool was collected at baseline and shotgun metagenomic sequencing was performed to quantify gut microbial populations using previously published methods (Salgia et al Eur Urol 2020). Results: A total of 50 pts were studied (36:14 M:F) with a median age of 67 (range, 32-85). Twenty pts and 30 pts had subsequent initiation of VEGF-TKI and ICI therapy, respectively. Levels of Akkermansia spp were significantly higher in pts who were IL-6 low (P = 0.023). In contrast, pts who were IL-6 high had higher levels of enteric pathogens, including Salmonella spp and Enterococcus spp. Both Akkermansia spp and Bacteroides spp levels were higher in pts who were IL-8 low. Associations between cytokine levels, microbiome composition, and treatment response will be presented. Conclusions: Given studies suggesting the role of Akkermansia spp in enhancing ICI response (Routy et al Science 2018), our data provide a critical link between the gut microbiome and systemic immunomodulation.

2019 ◽  
Author(s):  
Alessia Visconti ◽  
Caroline I. Le Roy ◽  
Fabio Rosa ◽  
Niccolo Rossi ◽  
Tiphaine C. Martin ◽  
...  

AbstractThe human gut is inhabited by a complex and metabolically active microbial ecosystem regulating host health. While many studies have focused on the effect of individual microbial taxa, the metabolic potential of the entire gut microbial ecosystem has been largely under-explored. We characterised the gut microbiome of 1,004 twins via whole shotgun metagenomic sequencing (average 39M reads per sample). We observed greater similarity, across unrelated individuals, for functional metabolic pathways (82%) than for taxonomic composition (43%). We conducted a microbiota-wide association study linking both taxonomic information and microbial metabolic pathways with 673 blood and 713 faecal metabolites (Metabolon, Inc.). Metabolic pathways associated with 34% of blood and 95% of faecal metabolites, with over 18,000 significant associations, while species-level results identified less than 3,000 associations, suggesting that coordinated action of multiple taxa is required to affect the metabolome. Finally, we estimated that the microbiome mediated a crosstalk between 71% of faecal and 15% of blood metabolites, highlighting six key species (unclassified Subdoligranulum spp., Faecalibacterium prausnitzii, Roseburia inulinivorans, Methanobrevibacter smithii, Eubacterium rectale, and Akkermansia muciniphila). Because of the large inter-person variability in microbiome composition, our results underline the importance of studying gut microbial metabolic pathways rather than focusing purely on taxonomy to find therapeutic and diagnostic targets.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 5078-5078
Author(s):  
Nazli Dizman ◽  
Joann Hsu ◽  
Paulo Gustavo Bergerot ◽  
John D Gillece ◽  
Megan Folkerts ◽  
...  

5078 Background: Studies suggest a link between the gut microbiome and mRCC outcomes, including evidence that mRCC patients (pts) possess a lower abundance of Bifidobacterium spp compared to healthy adults (Pal et al Clin Cancer Res 2015). The aim of this study was to assess if Bifidobacterium-containing probiotics could modulate the gut microbiome and impact rates of clinical benefit (CB) from VEGF-TKIs. Methods: Pts initiating VEGF-TKI therapy for mRCC were randomized to probiotic supplemented (PSu) or probiotic restricted (PRe) treatment arms. Pts in the PSu arm consumed two 4 oz servings of Activia daily. Stool samples were collected prior to therapy and at wks 2, 3, 4 and 12. Gut microbiota composition was assessed using whole genome shotgun metagenomic sequencing (Zhu et al Microbiome 2018). The primary endpoint was change in Bifidobacterium spp with therapy. Microbiome composition was compared across pts with CB (complete/partial response or stable disease) versus no CB (NCB). Results: In total, 20 pts were enrolled. The most frequent VEGF-TKIs were cabozantinib (45%), sunitinib (25%) and lenvatinib (25%). Median progression-free survival (PFS) was 6.5 months (95%CI 0.3-12.9) and CB rate was 75%. Bifidobacterium animalis, the active ingredient of Activia, reached detectable levels in all pts in the PSu arm, but was only detectable in one pt in the PRe arm. CB rate was not significantly different in PSu vs PRe arms (70% vs 80%, p > 0.05), and there was no difference in PFS. LDA effect size (LEfSe) analysis of MetaPhIAn2 data captured 25 enriched species demonstrating an LDA score > 3 in either CB or NCB. Of those with high LDA scores, Barnesiella intesitinihominis and Akkermansia municiphila were the most significant members (p = 7.4 x 10−6 and p = 5.6 10−3, respectively). While 92% of B. intestinihominis positive pts obtained a CB, only 50% of B. intestinihominis negative pts obtained CB (p = 0.036). Conclusions: This is the first prospective randomized study demonstrating modulation of the gut microbiome with probiotics in mRCC. While microbiome modulation by probiotics did not increase CB rates as intended, consecutive stool specimens allowed us to identify an association between B. intesitinihominis, A. municiphila and CB with VEGF-TKIs. In addition to the previously documented association between A. municiphila and immunotherapy outcome (Routy et al. Science 2018), this species may predict activity with VEGF-TKIs. Clinical trial information: NCT02944617 .


2019 ◽  
Vol 79 (1) ◽  
pp. 132-140 ◽  
Author(s):  
Jian Yin ◽  
Peter Richard Sternes ◽  
Mingbang Wang ◽  
Jing Song ◽  
Mark Morrison ◽  
...  

ObjectivesDiverse evidence including clinical, genetic and microbiome studies support a major role of the gut microbiome in the common immune-mediated arthropathy, ankylosing spondylitis (AS). We set out to (1) further define the key microbial characteristics driving disease, and (2) examine the effects of tumour necrosis factor-inhibitor (TNFi) therapy upon the microbiome.MethodsThe stools from a case–control cohort of 250 Han-Chinese subjects underwent shotgun metagenomic sequencing. All subjects were genotyped using the Illumina CoreExome SNP microarray.ResultsPrevious reports of gut dysbiosis in AS were reconfirmed and several notable bacterial species and functional categories were differentially abundant. TNFi therapy was correlated with a restoration the perturbed microbiome observed in untreated AS cases to that of healthy controls, including several important bacterial species that have been previously associated with AS and other related diseases. Enrichment of bacterial peptides homologous to HLA-B27-presented epitopes was observed in the stools of patients with AS, suggesting that either HLA-B27 fails to clear these or that they are involved in driving HLA-B27-associated immune reactions. TNFi therapy largely restored the perturbed microbiome observed in untreated AS cases to that of healthy controls, including several important bacterial species that have been previously associated with AS and other related diseases. TNFi therapy of patients with AS was also associated with a reduction of potentially arthritogenic bacterial peptides, relative to untreated patients.ConclusionThese findings emphasise the key role that the gut microbiome plays in driving the pathogenesis of AS and highlight potential therapeutic and/or preventative targets.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kory J Dees ◽  
Hyunmin Koo ◽  
J Fraser Humphreys ◽  
Joseph A Hakim ◽  
David K Crossman ◽  
...  

Abstract Background Although immunotherapy works well in glioblastoma (GBM) preclinical mouse models, the therapy has not demonstrated efficacy in humans. To address this anomaly, we developed a novel humanized microbiome (HuM) model to study the response to immunotherapy in a preclinical mouse model of GBM. Methods We used 5 healthy human donors for fecal transplantation of gnotobiotic mice. After the transplanted microbiomes stabilized, the mice were bred to generate 5 independent humanized mouse lines (HuM1-HuM5). Results Analysis of shotgun metagenomic sequencing data from fecal samples revealed a unique microbiome with significant differences in diversity and microbial composition among HuM1-HuM5 lines. All HuM mouse lines were susceptible to GBM transplantation, and exhibited similar median survival ranging from 19 to 26 days. Interestingly, we found that HuM lines responded differently to the immune checkpoint inhibitor anti-PD-1. Specifically, we demonstrate that HuM1, HuM4, and HuM5 mice are nonresponders to anti-PD-1, while HuM2 and HuM3 mice are responsive to anti-PD-1 and displayed significantly increased survival compared to isotype controls. Bray-Curtis cluster analysis of the 5 HuM gut microbial communities revealed that responders HuM2 and HuM3 were closely related, and detailed taxonomic comparison analysis revealed that Bacteroides cellulosilyticus was commonly found in HuM2 and HuM3 with high abundances. Conclusions The results of our study establish the utility of humanized microbiome mice as avatars to delineate features of the host interaction with gut microbial communities needed for effective immunotherapy against GBM.


2020 ◽  
Author(s):  
Caroline Ivanne Le Roy ◽  
Alexander Kurilshikov ◽  
Emily Leeming ◽  
Alessia Visconti ◽  
Ruth Bowyer ◽  
...  

Abstract Background: Yoghurt contains live bacteria that could contribute via modulation of the gut microbiota to its reported beneficial effects such as reduced body weight gain and lower incidence of type 2 diabetes. To date, the association between yoghurt consumption and the composition of the gut microbiota is underexplored. Here we used clinical variables, metabolomics, 16S rRNA and shotgun metagenomic sequencing data collected on over 1000 predominantly female UK twins to define the link between the gut microbiota and yoghurt-associated health benefits. Results: According to food frequency questionnaires (FFQ), 73% of subjects consumed yoghurt. Consumers presented a healthier diet pattern (healthy eating index: beta = 2.17±0.34; P = 2.72x10-10) and improved metabolic health characterised by reduced visceral fat (beta = -28.18±11.71 g; P = 0.01). According to 16S rRNA gene analyses and whole shotgun metagenomic sequencing approach consistent taxonomic variations were observed with yoghurt consumption. More specifically, we identified higher abundance of species used as yoghurt starters Streptococcus thermophilus (beta = 0.41±0.051; P = 6.14x10-12) and sometimes added Bifidobacterium animalis subsp. lactis (beta = 0.30±0.052; P = 1.49x10-8) in the gut of yoghurt consumers. Replication in 1103 volunteers from the LifeLines-DEEP cohort confirmed the increase of S. thermophilus among yoghurt consumers. Using food records collected the day prior to faecal sampling we showed that increase in these two yoghurt bacteria could be transient. Metabolomics analysis revealed that B. animalis subsp. lactis was associated with 13 faecal metabolites including a 3-hydroxyoctanoic acid, known to be involved in the regulation of gut inflammation.Conclusions: Yoghurt consumption is associated with reduced visceral fat mass and changes in gut microbiome including transient increase of yoghurt-contained species (i.e. S. thermophilus and B. lactis).


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi93-vi94
Author(s):  
Kory Dees ◽  
Hyunmin Koo ◽  
James Humphreys ◽  
Joseph Hakim ◽  
David Crossman ◽  
...  

Abstract Although immunotherapy works well in glioblastoma (GBM) pre-clinical mouse models, the therapy has unfortunately not demonstrated efficacy in humans. In melanoma and other cancers, the composition of the gut microbiome has been shown to determine responsiveness or resistance to immune checkpoint inhibitors (anti-PD-1). Most pre-clinical cancer studies have been done in mouse models using mouse gut microbiomes, but there are significant differences between mouse and human microbial gut compositions. To address this inconsistency, we developed a novel humanized microbiome (HuM) model to study the response to immunotherapy in a pre-clinical mouse model of GBM. We used five healthy human donors for fecal transplantation of gnotobiotic mice. After the transplanted microbiomes stabilized, the mice were bred to generate five independent humanized mouse lines (HuM1-HuM5). Analysis of shotgun metagenomic sequencing data from fecal samples revealed a unique microbiome with significant differences in diversity and microbial composition among HuM1-HuM5 lines. Interestingly, we found that the HuM lines responded differently to anti-PD-1. Specifically, we demonstrate that HuM2 and HuM3 mice are responsive to anti-PD-1 and displayed significantly increased survival compared to isotype controls, while HuM1, HuM4, and HuM5 mice are resistant to anti-PD-1. These mice are genetically identical, and only differ in the composition of the gut microbiome. In a correlative experiment, we found that disrupting the responder HuM2 microbiome with antibiotics abrogated the positive response to anti-PD-1, indicating that HuM2 microbiota must be present in the mice to elicit the positive response to anti-PD-1 in the GBM model. The question remains of whether the “responsive” microbial communities in HuM2 and HuM3 can be therapeutically exploited and applicable in other tumor models, or if the “resistant” microbial communities in HuM1, HuM4, and HuM5 can be depleted and/or replaced. Future studies will assess responder microbial transplants as a method of enhancing immunotherapy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Matthew S. Bramble ◽  
Neerja Vashist ◽  
Arthur Ko ◽  
Sambhawa Priya ◽  
Céleste Musasa ◽  
...  

AbstractKonzo, a distinct upper motor neuron disease associated with a cyanogenic diet and chronic malnutrition, predominately affects children and women of childbearing age in sub-Saharan Africa. While the exact biological mechanisms that cause this disease have largely remained elusive, host-genetics and environmental components such as the gut microbiome have been implicated. Using a large study population of 180 individuals from the Democratic Republic of the Congo, where konzo is most frequent, we investigate how the structure of the gut microbiome varied across geographical contexts, as well as provide the first insight into the gut flora of children affected with this debilitating disease using shotgun metagenomic sequencing. Our findings indicate that the gut microbiome structure is highly variable depending on region of sampling, but most interestingly, we identify unique enrichments of bacterial species and functional pathways that potentially modulate the susceptibility of konzo in prone regions of the Congo.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 294 ◽  
Author(s):  
Anna Shmagel ◽  
Ryan Demmer ◽  
Daniel Knights ◽  
Mary Butler ◽  
Lisa Langsetmo ◽  
...  

Oral glucosamine sulfate (GS) and chondroitin sulfate (CS), while widely marketed as joint-protective supplements, have limited intestinal absorption and are predominantly utilized by gut microbiota. Hence the effects of these supplements on the gut microbiome are of great interest, and may clarify their mode of action, or explain heterogeneity in therapeutic responses. We conducted a systematic review of animal and human studies reporting the effects of GS or CS on gut microbial composition. We searched MEDLINE, EMBASE, and Scopus databases for journal articles in English from database inception until July 2018, using search terms microbiome, microflora, intestinal microbiota/flora, gut microbiota/flora and glucosamine or chondroitin. Eight original articles reported the effects of GS or CS on microbiome composition in adult humans (four articles) or animals (four articles). Studies varied significantly in design, supplementation protocols, and microbiome assessment methods. There was moderate-quality evidence for an association between CS exposure and increased abundance of genus Bacteroides in the murine and human gut, and low-quality evidence for an association between CS exposure and an increase in Desulfovibrio piger species, an increase in Bacteroidales S24-7 family, and a decrease in Lactobacillus. We discuss the possible metabolic implications of these changes for the host. For GS, evidence of effects on gut microbiome was limited to one low-quality study. This review highlights the importance of considering the potential influence of oral CS supplements on gut microbiota when evaluating their effects and safety for the host.


Author(s):  
Caroline Mitchell ◽  
Larson Hogstrom ◽  
Allison Bryant ◽  
Agnes Bergerat ◽  
Avital Cher ◽  
...  

AbstractDelivery mode is the variable with the greatest influence on the infant gut microbiome composition in the first few months of life. Children born by Cesarean section (C-section) lack species from the Bacteroides genus in their gut microbial community, and this difference can be detectable until 6-18 months of age. One hypothesis is that these differences stem from lack of exposure to the maternal vaginal microbiome, as children born by C-section do not pass through the birth canal; however, Bacteroides species are not common members of the vaginal microbiome, thus this explanation seems inadequate. Here, we set out to re-evaluate this hypothesis by collecting rectal and vaginal samples before delivery from 73 mothers with paired stool from their infants in the first two weeks of life. We compared microbial profiles of infants born by planned, pre-labor C-section to those born by emergent, post-labor surgery (where the child was in the birth canal, but eventually delivered through an abdominal incision), and found no significant differences in the microbiome between these two groups. Both groups showed the characteristic signature lack of Bacteroides species, despite their difference in exposure to the birth canal. Surprisingly, this signature was only evident in samples from week two of life, but not in the first week. Children born by C-section often had high abundance of Bacteroides in their first few days of life, but these were not stable colonizers of the infant gut, as they were not detectable by week two. Finally, we used metagenomic sequencing to compare microbial strains in maternal vaginal and rectal samples and samples from their infants; we found evidence for mother-to-child transmission of rectal rather than vaginal strains. These results challenge birth canal exposure as the dominant factor in infant gut microbiome establishment and implicate colonization efficiency rather than exposure as a dictating factor of the newborn gut microbiome composition.


2021 ◽  
Author(s):  
Xinyue Zhang ◽  
Kun Guo ◽  
Linjing Shi ◽  
Ting Sun ◽  
Songmei Geng

Abstract Background: Psoriasis is an inflammatory skin disease associated with multiple comorbidities and substantially diminishes patients’ quality of life. The gut microbiome has become a hot topic in psoriasis as it has been shown to affect both allergy and autoimmunity diseases in recent studies. Our objective was to identify differences in the fecal microbial composition of patients with psoriasis compared with healthy individuals to unravel the microbiota profiling in this autoimmune disease.Results: We collected fecal samples from 30 psoriasis patients and 30 healthy controls, sequenced them by 16S rRNA high-throughput sequencing, and identified the gut microbial composition using bioinformatic analyses including Quantitative Insights into Microbial Ecology (QIIME) and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt). Our results showed that different relative abundance of certain bacterial taxa between psoriasis patients and healthy individuals, including Faecalibacterium and Megamonas, were increased in patients with psoriasis. It’s also implicated that many cytokines act as main effect molecules in the pathology of psoriasis. We selected the inflammation-related indicators that were abnormal in psoriasis patients and found the microbiome variations were associated with the level of them, especially interleukin-2 receptor showed a positive relationship with Phascolarctobacterium and a negative relationship with the dialister. The relative abundance of Phascolarctobacterium and dialister can be regard as predictors of psoriasis activity. The correlation analysis based on microbiota and Inflammation-related indicators showed that microbiota dysbiosis might induce an abnormal immune response in psoriasis. Conclusions: We concluded that the gut microbiome composition in psoriasis patients has been altered markedly and provides evidence to understand the relationship between gut microbiota and psoriasis. More mechanistic experiments are needed to determine whether the differences observed in gut microbiota are the cause or consequences of psoriasis and whether the relationship between gut microbiota and cytokines was involved.


Sign in / Sign up

Export Citation Format

Share Document