Applicability analysis on index values of water stability of asphalt mixture

2013 ◽  
Vol 477-478 ◽  
pp. 1175-1178
Author(s):  
Ling Zou ◽  
Jing Wei Ne ◽  
Weng Gang Zhang

70# and 90# matrix asphalt mixture with MaR were studied through dynamic modulus test, rutting test, freeze-thaw splitting test, bending test to study the applicability of the Modifying agent of rubber plastic compound (MaR) in matrix asphalt mixture.Test results were Compared with SBSI-C modified asphalt mixture.The results indicate that: high-temperature stability of MaR+70# asphalt mixture is as well as SBSI-C modified asphalt mixture,and is bettere than MaR+90# asphalt mixture; water stability of MaR+90# asphalt mixture is bettere than SBSI-C modified asphalt mixture and MaR+70# asphalt mixture; low temperature performance of MaR+90# asphalt mixture is bettere than MaR+70# asphalt mixture, but is worse than modified asphalt mixture SBSI-C ; MaR+70# asphalt mixture can be first used in area of resisting high temperature and rutting, MaR+90# asphalt mixture can be used if the water stability performance and low temperature performance are considered.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2528 ◽  
Author(s):  
Yueqin Hou ◽  
Xiaoping Ji ◽  
Jia Li ◽  
Xianghang Li

To study and evaluate the adhesion between recycled concrete aggregate and asphalt, the contact angles (CAs) between droplet (water and ethanol) and recycled concrete aggregate (RCA), natural aggregates, and solid bitumen (matrix asphalt, SBS modified asphalt) were tested via the sessile drop method with an optical microscope. The surface free energy was then calculated. The CAs between hot asphalt and RCA and natural aggregates were tested via the hanging slice method. The adhesive energy between asphalt and RCA and natural aggregates were calculated based on the test results of the surface free energy and CAs. Then, the influence of RCA on the water stability and fatigue performance of the asphalt mixture was analyzed by testing the water stability and fatigue properties of hot mix asphalts containing RCA (HMA-RCA) with different aggregates and RCA dosages. The surface energy of the various aggregates and the CAs between aggregates and asphalts were sorted as follows: Granite > RCA > serpentinite > limestone. The surface energy and CA of RCA were very close to that of serpentinite. The adhesive energy between various aggregates and asphalt were sorted as follows: Limestone > serpentinite > RCA > granite. The adhesive energy between RCA and asphalt was also very close to that of serpentinite. The residual Marshall stability, tensile strength ratio, and fatigue performance of the HMA-RCAs were gradually reduced along with the increasing RCA dosage. This effect may be attributed to the fact that the adhesive energy between the RCA and the asphalt was less than that of water and that the asphalt was easily stripped from the RCA surface. Excessive RCA content in the aggregate can lead to excessive porosity of the HMA-RCA. The CAs and adhesive energy between RCA and asphalt showed significant effects on the water stability and fatigue performance of HMA-RCA.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sun Min ◽  
Yufeng Bi ◽  
Mulian Zheng ◽  
Sai Chen ◽  
Jingjing Li

The energy consumption and greenhouse gas emission of asphalt pavement have become a very serious global problem. The high-temperature stability and durability of polyurethane (PU) are very good. It is studied as an alternative binder for asphalt recently. However, the strength-forming mechanism and the mixture structure of the PU mixture are different from the asphalt mixture. This work explored the design and performance evaluation of the PU mixture. The PU content of mixtures was determined by the creep slope (K), tensile strength ratios (TSR), immersion Cantabro loss (ICL), and the volume of air voids (VV) to ensure better water stability. The high- and low-temperature stability, water stability, dynamic mechanical property, and sustainability of the PU mixture were evaluated and compared with those of the stone matrix asphalt mixture (SMA). The test results showed that the dynamic stability and bending strain of the PU mixture were about 7.5 and 2.3 times of SMA. The adhesion level of PU and the basalt aggregate was one level greater than the limestone, and basalt aggregates were proposed to use in the PU mixture to improve water stability. Although the initial TSR and ICL of PU mixture were lower, the long-term values were higher; the PUM had better long-term water damage resistance. The dynamic modulus and phase angles (φ) of the PU mixture were much higher. The energy consumption and CO2 emission of the PU mixture were lower than those of SMA. Therefore, the cold-mixed PU mixture is a sustainable material with excellent performance and can be used as a substitute for asphalt mixture.


2019 ◽  
Vol 136 ◽  
pp. 03010
Author(s):  
Ma Qingna ◽  
Zhao Zhiqin ◽  
Xu Qian ◽  
Sun Feng

Adding sulphur dilution asphalt modifier SEAM to asphalt mixture is not only a modifier of asphalt mixture, but also an additive of asphalt mixture. When the modifier is added into the asphalt mixture, the road performance of the asphalt mixture can be improved. This paper studies SEAM modified asphalt mixture the Marshall property index, temperature stability, Water stability and fatigue feature in the Laboratory. On the based of the result of the experiment and analysis, SEAM can improve the high temperature stability, Water stability and fatigue feature. But the low temperature stability can’t improve.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
ZhanLiang Liu ◽  
Chen Zhang ◽  
Xin Qu

Emulsified asphalt mixture has the characteristics of convenient construction and durable performance, but its poor early strength and demulsification seriously restrict the popularization and application of this material. At present, the coal gangue produced by coal-fired power plants is generally discarded, resulting in serious environmental pollution. The combination of coal gangue and emulsified asphalt can explore an efficient utilization way for more and more coal gangue and also solve the curing problem of asphalt. In order to give full play to the advantages of existing materials and make rational use of resources, this paper studies the factors affecting the performance of coal gangue emulsified asphalt mixture based on orthogonal experimental design and optimizes its material composition parameters by considering the coupling effect of two factors. The water stability of coal gangue emulsified asphalt mixture is evaluated by the immersion Marshall test. Finally, the strength formation mechanism of coal gangue emulsified asphalt mixture is analyzed from the microscopic point of view. The results determined 7.5% as the optimum amount of emulsified asphalt in coal gangue emulsified asphalt mixture and recommended the best parameter combination of 7.5% emulsified asphalt, 6% coal gangue, and 5% water consumption. With the increase of coal gangue content, the water loss resistance of emulsified asphalt mixture increases gradually, and the water stability of emulsified asphalt mixture can be improved by adding coal gangue. According to the microscopic analysis, the strength of the mixture is formed by the joint action of emulsified asphalt and coal gangue, in which the hydration products of coal gangue and asphalt play the role of cementation and strength together. The ordinary emulsified asphalt mortar mainly contains CaCO3, which mainly plays the role of physical filling.


2014 ◽  
Vol 941-944 ◽  
pp. 687-690 ◽  
Author(s):  
Zhao Hui Sun ◽  
Guang Qiang Zhu ◽  
Jing Ma ◽  
Qing Bin Yu ◽  
Bao Yang Yu ◽  
...  

High temperature, low temperature, water stability and fatigue test were done for three types of modified asphalt mixture of intermediate course used in high-grade highway engineering in Northeast region. The asphalt mixture design scheme with excellent performance suitable for application of intermediate course was selected for reference in Northeast area.


2012 ◽  
Vol 457-458 ◽  
pp. 435-438
Author(s):  
Xue Dong Guo ◽  
Cao Jian ◽  
Xiang Yang Fang

In this paper,study water content and water stability of AC and SMA asphalt mixtures, and reach the following conclusions. In the normal saturated condition, the maximum water content of AC and SMA asphalt mixture is 0.28% and 0.32%.And in the vacuum saturated condition, the maximum water content of AC and SMA asphalt mixture is 0.8% and 0.78%.The water of AC and SMA asphalt mixture separately take 8 days and 9 days to drain completely in the normal saturated condition. But in the vacuum saturated condition, the time is more than two months. In different water content conditions, the splitting tensile strength of AC asphalt mixture is 0%> 100%> 25%> 75%> 50%.But the splitting tensile strength of SMA asphalt mixture is 0%> 100%> 25%> 50%> 75%.


2011 ◽  
Vol 243-249 ◽  
pp. 710-716 ◽  
Author(s):  
Ying Chun Cai ◽  
Yuan Xun Zheng

To study the influence of fiber on the water stability of asphalt mixtures, the optimum dosage of asphalt and fibers are studied by the method of Marshall test and rut test. The results demonstrate that the optimum dosage of asphalt and fibers are 4.63% and 0.30%, respectively. Then the improved effects of basalt fiber on water stability of asphalt mixtures are evaluated through immersed Marshall test and freeze-thaw splitting test according to related specifications. The results show that the freeze-thaw splitting strength and splitting strength without freeze-thaw of fiber-reinforced asphalt mixture are improved to some extent compared with control mixture. Splitting strength without freeze-thaw of basalt, polyester and xylogen fiber-reinforced asphalt mixture is increased by 36.4%, 15.4% and 6.2%, and freeze-thaw splitting strength is increased by 55.2%, 28.7% and 14.5%. It can be concluded that fiber can remarkably improved the water stability of asphalt mixtures, besides; the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.


2012 ◽  
Vol 178-181 ◽  
pp. 1338-1343
Author(s):  
Wei Jiang ◽  
Jing Jing Xiao

According to the porous asphalt concrete’s big void structure as well as high temperature and rainy application environment, the author point out that using the conventional evaluation index such as high temperature stability and water stability to evaluate the PAC’s performance seem single, and then put up with estimating the PAC’s pavement performance by means of Hamburg Wheel Tracking under the water-high temperature’s comprehensive action. Studied on the PAC with the same raw materials and different gradations, and compared with the experimental results of AC-13 modified asphalt mixture and SMA-13, the results shows that, Hamburg Wheel Tracking test not only considered the water-high temperature’s comprehensive action on mixture, but also considered the mixture’s performance decay under long-term loading. Hamburg Wheel Tracking test can evaluate the PAC’s performance more practically, the PAC which materials and graduations reasonably designed have good performance, and its Hamburg Wheel Tracking final deformation is only 3.89mm, it can satisfy the demand from the high temperature and rainy environment. As well, the test results also comes to the conclusions that under the same materials and the same air voids, the PAC with coarse framework structure own better water stability and water-high temperature stability.


2013 ◽  
Vol 639-640 ◽  
pp. 346-349
Author(s):  
Zhao Bin Xie

In order to verify the characterization degree of water stability, research selects some clay content aggregate retrieved from road engineering field to produce rubber asphalt mixture and carry out the water stability test. Test results show that clay content in aggregate has a significant influence on the water stability of rubber asphalt mixture. When the content of clay in aggregate less than 1%, the influence on water stability is smaller; when the clay content exceeds 2%, the decay rate on water stability performance and long term properties obviously speed up, resulted in serious water damage.


Sign in / Sign up

Export Citation Format

Share Document