scholarly journals Dietary Supplementation of Arachidonic Acid Is Associated with Higher Whole Body Weight and Bone Mineral Density in Growing Pigs

2000 ◽  
Vol 47 (5) ◽  
pp. 692-697 ◽  
Author(s):  
Hope A Weiler
2018 ◽  
Vol 119 (10) ◽  
pp. 1111-1118 ◽  
Author(s):  
Monika Sobol ◽  
Stanisława Raj ◽  
Grzegorz Skiba

AbstractConsumption of a high-fat diet, rich in SFA, causes deterioration of bone properties. Some studies suggest that feeding inulin to animals may increase mineral absorption and positively affect bone quality; however, these studies have been carried out only on rodents fed a standard diet. The primary objective of this study was to determine the effect of inulin on bone health of pigs (using it as an animal model for humans) fed a high-fat diet rich in SFA, having an unbalanced ratio of lysine:metabolisable energy. It was hypothesised that inulin reduces the negative effects of such a diet on bone health. At 50 d of age, twenty-one pigs were randomly allotted to three groups: the control (C) group fed a standard diet, and two experimental (T and TI) groups fed a high-fat diet rich in SFA. Moreover, TI pigs consumed an extra inulin supply (7 % of daily feed intake). After 10 weeks, whole-body bone mineral content (P=0·0054) and bone mineral density (P=0·0322) were higher in pigs of groups TI and C compared with those of group T. Femur bone mineral density was highest in pigs in group C, lower in group TI and lowest in group T (P=0·001). Femurs of pigs in groups TI and C had similar, but higher, maximum strength compared with femurs of pigs in group T (P=0·0082). In conclusion, consumption of a high-fat diet rich in SFA adversely affected bone health, but inulin supplementation in such a diet diminishes this negative effect.


2016 ◽  
Vol 36 (3) ◽  
pp. 287-294 ◽  
Author(s):  
Y Chen ◽  
L Huang ◽  
J Zhu ◽  
K Wu

The effects of short-term use of oral glucocorticoid (GC) on the skeleton are not well defined. To address this gap, the influences of 7 days, 21 days of GC administration on femurs of intact rats were investigated. Forty 4-month-old female Sprague–Dawley rats were randomly divided into control group (Cont) and prednisone-treated group (Pre) and administered either distilled water or prednisone acetate at doses of 3.5 mg/kg/day for 0, 7 and 21 days, respectively. All the femurs were harvested for dual-energy X-ray absorptiometry scan, biomechanical testing and micro computed tomography scan. The whole body weight, femur bone mineral density (BMD), all three-point bending test parameters, microstructural parameters increased or improved significantly in Cont at day 21 when compared to day 0. The whole body weight, distal femur BMD, Young’s modulus, bending stiffness, density of tissue volume and trabecular thickness (Tb.Th) decreased, while structure model index and trabecular separation (Tb.Sp) increased significantly in Pre at day 21 when compared to age-matched control but had no significant differences between day 7 and day 21. Our data demonstrate that 7-day use of prednisone does not influence on rats’ femur, and 21-day use of prednisone slows in rate of whole body weight gain, decreases femur metaphysis BMD and bone stiffness which mainly due to the deteriorated bone microstructure.


Endocrinology ◽  
2012 ◽  
Vol 153 (5) ◽  
pp. 2245-2253 ◽  
Author(s):  
Astrid K. Stunes ◽  
Irene Westbroek ◽  
Jan O. Gordeladze ◽  
Björn I. Gustafsson ◽  
Janne E. Reseland ◽  
...  

The effects of leptin on bone are controversial. Although in vitro studies have shown that leptin stimulates osteoblast differentiation and mineralization and inhibits osteoclastogenesis, some rodent studies have shown that leptin administered centrally might result in decreased bone formation. In the present study we have investigated the skeletal effects of supraphysiological concentrations of leptin administered sc to rats. Female Fischer rats were given leptin 100 μg/d, 200 μg/d, or saline by continuous infusion for 9 wk. Bone mineral density (BMD) was measured by dual energy x-ray absorptiometry, bone microarchitecture was analyzed by micro-computed tomography, and biomechanical properties were tested by three-point bending experiments. At the end of the study, the body weight was significantly lower in rats receiving leptin compared with controls (−10.8% and −12.0% in low- and high-dose leptin groups, respectively). The high-dose leptin group also significantly lost weight compared with baseline. The plasma leptin concentration was 14- and 33-fold increased in the low- and high-dose groups, respectively. No significant differences in femoral BMD were observed. Whole-body BMD was significantly lower in the low-dose leptin group, whereas there was no difference between the high-dose leptin group and the control. Mechanical strength and microarchitecture were similar in the high-dose and the control group. The low-dose group, however, had decreased cortical volume in the femoral metaphysis, lowered bone strength, and altered moment of inertia. In conclusion, leptin given at very high doses maintains BMD, microarchitecture, and mechanical strength in female rats, despite a significant decrease in body weight.


1997 ◽  
Vol 73 (4) ◽  
Author(s):  
José Hugo L. Pessoa ◽  
Shlomo Lewin ◽  
Carlos A. Longui ◽  
Berenice B. Mendonça

2020 ◽  
pp. 026010602097524
Author(s):  
Darren G Candow ◽  
Philip D Chilibeck ◽  
Julianne Gordon ◽  
Emelie Vogt ◽  
Tim Landeryou ◽  
...  

Background: The combination of creatine supplementation and resistance training (10–12 weeks) has been shown to increase bone mineral content and reduce a urinary indicator of bone resorption in older males compared with placebo. However, the longer-term effects (12 months) of creatine and resistance training on bone mineral density and bone geometric properties in older males is unknown. Aim: To assess the effects of 12 months of creatine supplementation and supervised, whole-body resistance training on bone mineral density, bone geometric properties, muscle accretion, and strength in older males. Methods: Participants were randomized to supplement with creatine ( n = 18, 49–69 years, 0.1 g·kg-1·d-1) or placebo ( n = 20, 49–67 years, 0.1 g·kg-1·d-1) during 12 months of supervised, whole-body resistance training. Results: After 12 months of training, both groups experienced similar changes in bone mineral density and geometry, bone speed of sound, lean tissue and fat mass, muscle thickness, and muscle strength. There was a trend ( p = 0.061) for creatine to increase the section modulus of the narrow part of the femoral neck, an indicator of bone bending strength, compared with placebo. Adverse events did not differ between creatine and placebo. Conclusions: Twelve months of creatine supplementation and supervised, whole-body resistance training had no greater effect on measures of bone, muscle, or strength in older males compared with placebo.


2017 ◽  
Vol 135 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Ricardo Ribeiro Agostinete ◽  
Igor Hideki Ito ◽  
Han Kemper ◽  
Carlos Marcelo Pastre ◽  
Mário Antônio Rodrigues-Júnior ◽  
...  

ABSTRACT CONTEXT AND OBJECTIVE: Peak height velocity (PHV) is an important maturational event during adolescence that affects skeleton size. The objective here was to compare bone variables in adolescents who practiced different types of sports, and to identify whether differences in bone variables attributed to sports practice were dependent on somatic maturation status. DESIGN AND SETTING: Cross-sectional study, São Paulo State University (UNESP). METHODS: The study was composed of 93 adolescents (12 to 16.5 years old), divided into three groups: no-sport group (n = 42), soccer/basketball group (n = 26) and swimming group (n = 25). Bone mineral density and content were measured using dual-energy x-ray absorptiometry and somatic maturation was estimated through using peak height velocity. Data on training load were provided by the coaches. RESULTS: Adolescents whose PHV occurred at an older age presented higher bone mineral density in their upper limbs (P = 0.018). After adjustments for confounders, such as somatic maturation, the swimmers presented lower values for bone mineral density in their lower limbs, spine and whole body. Only the bone mineral density in the upper limbs was similar between the groups. There was a negative relationship between whole-body bone mineral content and the weekly training hours (β: -1563.967; 95% confidence interval, CI: -2916.484 to -211.450). CONCLUSION: The differences in bone variables attributed to sport practice occurred independently of maturation, while high training load in situations of hypogravity seemed to be related to lower bone mass in swimmers.


2009 ◽  
Vol 69 (01) ◽  
pp. 163-168 ◽  
Author(s):  
M C Nevitt ◽  
Y Zhang ◽  
M K Javaid ◽  
T Neogi ◽  
J R Curtis ◽  
...  

Objectives:Previous studies suggest that high systemic bone mineral density (BMD) is associated with incident knee osteoarthritis (OA) defined by osteophytes but not with joint space narrowing (JSN), and are inconsistent regarding BMD and progression of existing OA. The association of BMD with incident and progressive tibiofemoral OA was tested in a large prospective study of men and women aged 50–79 years with or at risk for knee OA.Methods:Baseline and 30-month weight-bearing posteroanterior and lateral knee radiographs were scored for Kellgren-Lawrence (K-L) grade, JSN and osteophytes. Incident OA was defined as the development of K-L grade ⩾2 at follow-up. All knees were classified for increases in grade of JSN and osteophytes from baseline. The association of gender-specific quartiles of baseline BMD with risk of incident and progressive OA was analysed using logistic regression, adjusting for covariates.Results:The mean (SD) age of 1754 subjects was 63.2 (7.8) years and body mass index was 29.9 (5.4) kg/m2. In knees without baseline OA, higher femoral neck and whole body BMD were associated with an increased risk of incident OA and increases in grade of JSN and osteophytes (p<0.01 for trends); adjusted odds were 2.3–2.9-fold greater in the highest compared with the lowest BMD quartiles. In knees with existing OA, progression was not significantly related to BMD.Conclusions:In knees without OA, higher systemic BMD was associated with a greater risk of the onset of JSN and K-L grade ⩾2. The role of systemic BMD in early knee OA pathogenesis warrants further investigation.


PEDIATRICS ◽  
1990 ◽  
Vol 86 (3) ◽  
pp. 440-447 ◽  
Author(s):  
Laura K. Bachrach ◽  
David Guido ◽  
Debra Katzman ◽  
Iris F. Litt ◽  
Robert Marcus

Osteoporosis develops in women with chronic anorexia nervosa. To determine whether bone mass is reduced in younger patients as well, bone density was studied in a group of adolescent patients with anorexia nervosa. With single- and dual-photon absorptiometry, a comparison was made of bone mineral density of midradius, lumbar spine, and whole body in 18 girls (12 to 20 years of age) with anorexia nervosa and 25 healthy control subjects of comparable age. Patients had significantly lower lumbar vertebral bone density than did control subjects (0.830 ± 0.140 vs 1.054 ± 0.139 g/cm2) and significantly lower whole body bone mass (0.700 ± 0.130 vs 0.955 ± 0.130 g/cm2). Midradius bone density was not significantly reduced. Of 18 patients, 12 had bone density greater than 2 standard deviations less than normal values for age. The diagnosis of anorexia nervosa had been made less than 1 year earlier for half of these girls. Body mass index correlated significantly with bone mass in girls who were not anorexic (P &lt; .05, .005, and .0001 for lumbar, radius, and whole body, respectively). Bone mineral correlated significantly with body mass index in patients with anorexia nervosa as well. In addition, age at onset and duration of anorexia nervosa, but not calcium intake, activity level, or duration of amenorrhea correlated significantly with bone mineral density. It was concluded that important deficits of bone mass occur as a frequent and often early complication of anorexia nervosa in adolescence. Whole body is considerably more sensitive than midradius bone density as a measure of cortical bone loss in this illness. Low body mass index is an important predictor of this reduction in bone mass.


Sign in / Sign up

Export Citation Format

Share Document