scholarly journals Arcuate Nucleus-Specific Leptin Receptor Gene Therapy Attenuates the Obesity Phenotype of Koletsky (fak/fak) Rats

Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2016-2024 ◽  
Author(s):  
Gregory J. Morton ◽  
Kevin D. Niswender ◽  
Christopher J. Rhodes ◽  
Martin G. Myers ◽  
James E. Blevins ◽  
...  

Leptin signaling in the hypothalamic arcuate nucleus (ARC) is hypothesized to play an important role in energy homeostasis. To investigate whether leptin signaling limited to this brain area is sufficient to reduce food intake and body weight, we used adenoviral gene therapy to express the signaling isoform of the leptin receptor, leprb, in the ARC of leptin receptor-deficient Koletsky (fak/fak) rats. Successful expression of adenovirus containing leprb (Ad-leprb) selectively in the ARC was documented by in situ hybridization. Using real-time PCR, we further demonstrated that bilateral microinjection of Ad-leprb into the ARC restored low hypothalamic levels of leprb mRNA to values approximating those of wild-type (Fak/Fak) controls. Restored leptin receptor expression in the ARC reduced both mean daily food intake (by 13%) and body weight gain (by 33%) and increased hypothalamic proopiomelanocortin mRNA by 65% while decreasing neuropeptide Y mRNA levels by 30%, relative to fak/fak rats injected with a control adenovirus (Ad-lacZ) (P < 0.05 for each comparison). In contrast, Ad-leprb delivery to either the lateral hypothalamic area of fak/fak rats or to the ARC of wild-type Fak/Fak rats had no effect on any of these parameters. These findings collectively support the hypothesis that leptin receptor signaling in the ARC is sufficient to mediate major effects of leptin on long-term energy homeostasis. Adenoviral gene therapy is thus a viable strategy with which to study the physiological importance of specific molecules acting in discrete brain areas.

2012 ◽  
Vol 112 (8) ◽  
pp. 1410-1418 ◽  
Author(s):  
Weihong Pan ◽  
Hung Hsuchou ◽  
Germaine G. Cornelissen-Guillaume ◽  
Bhavvani Jayaram ◽  
Yuping Wang ◽  
...  

Leptin, a polypeptide hormone produced mainly by adipocytes, has diverse effects in both the brain and peripheral organs, including suppression of feeding. Other than mediating leptin transport across the blood-brain barrier, the role of the endothelial leptin receptor remains unclear. We recently generated a mutant mouse strain lacking endothelial leptin receptor signaling, and showed that there is an increased uptake of leptin by brain parenchyma after its delivery by in situ brain perfusion. Here, we tested the hypothesis that endothelial leptin receptor mutation confers partial resistance to diet-induced obesity. These ELKO mice had similar body weight and percent fat as their wild-type littermates when fed with rodent chow, but blood concentrations of leptin were significantly elevated. In response to a high-fat diet, wild-type mice had a greater gain of body weight and fat than ELKO mice. As shown by metabolic chamber measurement, the ELKO mice had higher oxygen consumption, carbon dioxide production, and heat dissipation, although food intake was similar to that of the wild-type mice and locomotor activity was even reduced. This indicates that the partial resistance to diet-induced obesity was mediated by higher metabolic activity in the ELKO mice. Since neuronal leptin receptor knockout mice show obesity and diabetes, the results suggest that endothelial leptin signaling shows opposite effects from that of neuronal leptin signaling, with a facilitatory role in diet-induced obesity.


Endocrinology ◽  
2007 ◽  
Vol 149 (4) ◽  
pp. 1773-1785 ◽  
Author(s):  
Esther van de Wall ◽  
Rebecca Leshan ◽  
Allison W. Xu ◽  
Nina Balthasar ◽  
Roberto Coppari ◽  
...  

Two known types of leptin-responsive neurons reside within the arcuate nucleus: the agouti gene-related peptide (AgRP)/neuropeptide Y (NPY) neuron and the proopiomelanocortin (POMC) neuron. By deleting the leptin receptor gene (Lepr) specifically in AgRP/NPY and/or POMC neurons of mice, we examined the several and combined contributions of these neurons to leptin action. Body weight and adiposity were increased by Lepr deletion from AgRP and POMC neurons individually, and simultaneous deletion in both neurons (A+P LEPR-KO mice) further increased these measures. Young (periweaning) A+P LEPR-KO mice exhibit hyperphagia and decreased energy expenditure, with increased weight gain, oxidative sparing of triglycerides, and increased fat accumulation. Interestingly, however, many of these abnormalities were attenuated in adult animals, and high doses of leptin partially suppress food intake in the A+P LEPR-KO mice. Although mildly hyperinsulinemic, the A+P LEPR-KO mice displayed normal glucose tolerance and fertility. Thus, AgRP/NPY and POMC neurons each play mandatory roles in aspects of leptin-regulated energy homeostasis, high leptin levels in adult mice mitigate the importance of leptin-responsiveness in these neurons for components of energy balance, suggesting the presence of other leptin-regulated pathways that partially compensate for the lack of leptin action on the POMC and AgRP/NPY neurons.


Endocrinology ◽  
2010 ◽  
Vol 151 (1) ◽  
pp. 143-152 ◽  
Author(s):  
Victoria F. Turek ◽  
James L. Trevaskis ◽  
Barry E. Levin ◽  
Ambrose A. Dunn-Meynell ◽  
Boman Irani ◽  
...  

Abstract The present studies aimed to identify mechanisms contributing to amylin/leptin synergy in reducing body weight and adiposity. We reasoned that if amylin/leptin harnessed complementary neuronal pathways, then in the leptin-sensitive state, amylin should augment leptin signaling/binding and that in the absence of endogenous amylin, leptin signaling should be diminished. Amylin (50 μg/kg, ip) amplified low-dose leptin-stimulated (15 μg/kg, ip) phosphorylated signal transducer and activator of transcription-3 signaling within the arcuate nucleus (ARC) in lean rats. Amylin (50 μg/kg · d) or leptin (125 μg/kg · d) infusion to lean rats decreased 28-d food intake (14 and 10%, respectively), body weight (amylin by 4.3%, leptin by 4.9%), and epididymal fat (amylin by 19%, leptin by 37%). Amylin/leptin co-infusion additively decreased food intake (by 26%) and reduced body weight (by 15%) and epididymal fat (by 78%; all P < 0.05 vs. all groups) in a greater than mathematically additive manner, consistent with synergy. Amylin increased leptin binding within the ventromedial hypothalamus (VMN) by 35% and dorsomedial hypothalamus by 47% (both P < 0.05 vs. vehicle). Amylin/leptin similarly increased leptin binding in the VMN by 40% and ARC by 70% (P < 0.05 vs. vehicle). In amylin-deficient mice, hypothalamic leptin receptor mRNA expression was reduced by 50%, leptin-stimulated phosphorylated signal transducer and activator of transcription-3 within ARC and VMN was reduced by 40%, and responsiveness to leptin’s (1 mg/kg · d for 28 d) weight-reducing effects was attenuated (all P < 0.05 vs. wild-type controls). We suggest that amylin/leptin’s marked weight- and fat-reducing effects are due to activation of intrinsic synergistic neuronal signaling pathways and further point to the integrated neurohormonal therapeutic potential of amylin/leptin agonism in obesity.


2009 ◽  
Vol 297 (6) ◽  
pp. E1247-E1259 ◽  
Author(s):  
David L. Morris ◽  
Liangyou Rui

The brain controls energy homeostasis and body weight by integrating various metabolic signals. Leptin, an adipose-derived hormone, conveys critical information about peripheral energy storage and availability to the brain. Leptin decreases body weight by both suppressing appetite and promoting energy expenditure. Leptin directly targets hypothalamic neurons, including AgRP and POMC neurons. These leptin-responsive neurons widely connect to other neurons in the brain, forming a sophisticated neurocircuitry that controls energy intake and expenditure. The anorexigenic actions of leptin are mediated by LEPRb, the long form of the leptin receptor, in the hypothalamus. LEPRb activates both JAK2-dependent and -independent pathways, including the STAT3, PI 3-kinase, MAPK, AMPK, and mTOR pathways. These pathways act coordinately to form a network that fully mediates leptin response. LEPRb signaling is regulated by both positive (e.g., SH2B1) and negative (e.g., SOCS3 and PTP1B) regulators and by endoplasmic reticulum stress. Leptin resistance, a primary risk factor for obesity, likely results from impairment in leptin transport, LEPRb signaling, and/or the neurocircuitry of energy balance.


Clinics ◽  
2010 ◽  
Vol 65 (9) ◽  
pp. 885-894 ◽  
Author(s):  
Martina von Wilmsdorff ◽  
Marie-Luise Bouvier ◽  
Uwe Henning ◽  
Andrea Schmitt ◽  
Wolfgang Gaebel

2019 ◽  
Vol 18 (7) ◽  
pp. 516-522
Author(s):  
Néstor F. Díaz ◽  
Héctor Flores-Herrera ◽  
Guadalupe García-López ◽  
Anayansi Molina-Hernández

The brain histaminergic system plays a pivotal role in energy homeostasis, through H1- receptor activation, it increases the hypothalamic release of histamine that decreases food intake and reduces body weight. One way to increase the release of hypothalamic histamine is through the use of antagonist/inverse agonist for the H3-receptor. Histamine H3-receptors are auto-receptors and heteroreceptors located on the presynaptic membranes and cell soma of neurons, where they negatively regulate the synthesis and release of histamine and other neurotransmitters in the central nervous system. Although several compounds acting as H3-receptor antagonist/inverse agonists have been developed, conflicting results have been reported and only one has been tested as anti-obesity in humans. Animal studies revealed the opposite effect in food intake, energy expeditor, and body weight, depending on the drug, spice, and route of administration, among others. The present review will explore the state of art on the effects of H3-receptor ligands on appetite and body-weight, going through the following: a brief overview of the circuit involved in the control of food intake and energy homeostasis, the participation of the histaminergic system in food intake and body weight, and the H3-receptor as a potential therapeutic target for obesity.


2020 ◽  
Vol 20 (8) ◽  
pp. 1262-1267
Author(s):  
Haojun Yang ◽  
Hanyang Liu ◽  
YuWen Jiao ◽  
Jun Qian

Background: G protein-coupled bile acid receptor (TGR5) is involved in a number of metabolic diseases. The aim of this study was to identify the role of TGR5 after Roux-en-Y gastric bypass (GBP). Methods: Wild type and TGR5 knockout mice (tgr5-/-) were fed a high-fat diet (HFD) to establish the obesity model. GBP was performed. The changes in body weight and food intake were measured. The levels of TGR5 and peptide YY (PYY) were evaluated by RT-PCR, Western blot, and ELISA. Moreover, the L-cells were separated from wild type and tgr5-/- mice. The levels of PYY in L-cells were evaluated by ELISA. Results: The body weights were significantly decreased after GBP in wild type mice (p<0.05), but not tgr5-/- mice (p>0.05). Food intake was reduced after GBP in wild type mice, but also not significantly affected in tgr5-/- mice (p>0.05). The levels of PYY were significantly increased after GBP compared with the sham group (p<0.05); however, in tgr5-/- mice the expression of PYY was not significantly affected (p>0.05). After INT-777 stimulation in L-cells obtained from murine intestines, the levels of PYY were significantly increased in L-cells tgr5+/+ (p<0.05). Conclusion: Our study suggests that GBP up-regulated the expression of TGR5 in murine intestines, and increased the levels of PYY, which further reduced food intake and decreased the body weight.


2021 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
Kirsty Hamilton ◽  
Jenni Harvey

It is widely accepted that the endocrine hormone leptin controls food intake and energy homeostasis via activation of leptin receptors expressed on hypothalamic arcuate neurons. The hippocampal formation also displays raised levels of leptin receptor expression and accumulating evidence indicates that leptin has a significant impact on hippocampal synaptic function. Thus, cellular and behavioural studies support a cognitive enhancing role for leptin as excitatory synaptic transmission, synaptic plasticity and glutamate receptor trafficking at hippocampal Schaffer collateral (SC)-CA1 synapses are regulated by leptin, and treatment with leptin enhances performance in hippocampus-dependent memory tasks. Recent studies indicate that hippocampal temporoammonic (TA)-CA1 synapses are also a key target for leptin. The ability of leptin to regulate TA-CA1 synapses has important functional consequences as TA-CA1 synapses are implicated in spatial and episodic memory processes. Moreover, degeneration is initiated in the TA pathway at very early stages of Alzheimer’s disease, and recent clinical evidence has revealed links between plasma leptin levels and the incidence of Alzheimer’s disease (AD). Additionally, accumulating evidence indicates that leptin has neuroprotective actions in various AD models, whereas dysfunctions in the leptin system accelerate AD pathogenesis. Here, we review the data implicating the leptin system as a potential novel target for AD, and the evidence that boosting the hippocampal actions of leptin may be beneficial.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1477
Author(s):  
Emanuela Pannia ◽  
Rola Hammoud ◽  
Ruslan Kubant ◽  
Jong Yup Sa ◽  
Rebecca Simonian ◽  
...  

Supplementation with [6S]-5-methyltetrahydrofolic acid (MTHF) is recommended as an alternative to folic acid (FA) in prenatal supplements. This study compared equimolar gestational FA and MTHF diets on energy regulation of female offspring. Wistar rats were fed an AIN-93G diet with recommended (2 mg/kg diet) or 5-fold (5X) intakes of MTHF or FA. At weaning, female offspring were fed a 45% fat diet until 19 weeks. The 5X-MTHF offspring had higher body weight (>15%), food intake (8%), light-cycle energy expenditure, and lower activity compared to 5X-FA offspring (p < 0.05). Both the 5X offspring had higher plasma levels of the anorectic hormone leptin at birth (60%) and at 19 weeks (40%), and lower liver weight and total liver lipids compared to the 1X offspring (p < 0.05). Hypothalamic mRNA expression of leptin receptor (ObRb) was lower, and of suppressor of cytokine signaling-3 (Socs3) was higher in the 5X-MTHF offspring (p < 0.05), suggesting central leptin dysregulation. In contrast, the 5X-FA offspring had higher expression of genes encoding for dopamine and GABA- neurotransmitter receptors (p < 0.01), consistent with their phenotype and reduced food intake. When fed folate diets at the requirement level, no differences were found due to form in the offspring. We conclude that MTHF compared to FA consumed at high levels in the gestational diets program central and peripheral mechanisms to favour increased weight gain in the offspring. These pre-clinical findings caution against high gestational intakes of folates of either form and encourage clinical trials examining their long-term health effects when consumed during pregnancy.


2002 ◽  
Vol 22 (14) ◽  
pp. 5027-5035 ◽  
Author(s):  
Su Qian ◽  
Howard Chen ◽  
Drew Weingarth ◽  
Myrna E. Trumbauer ◽  
Dawn E. Novi ◽  
...  

ABSTRACT Agouti-related protein (AgRP), a neuropeptide abundantly expressed in the arcuate nucleus of the hypothalamus, potently stimulates feeding and body weight gain in rodents. AgRP is believed to exert its effects through the blockade of signaling by α-melanocyte-stimulating hormone at central nervous system (CNS) melanocortin-3 receptor (Mc3r) and Mc4r. We generated AgRP-deficient (Agrp−/− ) mice to examine the physiological role of AgRP. Agrp−/− mice are viable and exhibit normal locomotor activity, growth rates, body composition, and food intake. Additionally, Agrp−/− mice display normal responses to starvation, diet-induced obesity, and the administration of exogenous leptin or neuropeptide Y (NPY). In situ hybridization failed to detect altered CNS expression levels for proopiomelanocortin, Mc3r, Mc4r, or NPY mRNAs in Agrp−/− mice. As AgRP and the orexigenic peptide NPY are coexpressed in neurons of the arcuate nucleus, we generated AgRP and NPY double-knockout (Agrp−/− ;Npy−/− ) mice to determine whether NPY or AgRP plays a compensatory role in Agrp−/− or NPY-deficient (Npy−/− ) mice, respectively. Similarly to mice deficient in either AgRP or NPY, Agrp−/− ;Npy−/− mice suffer no obvious feeding or body weight deficits and maintain a normal response to starvation. Our results demonstrate that neither AgRP nor NPY is a critically required orexigenic factor, suggesting that other pathways capable of regulating energy homeostasis can compensate for the loss of both AgRP and NPY.


Sign in / Sign up

Export Citation Format

Share Document