scholarly journals Prolactin-Like Protein-F Subfamily of Placental Hormones/Cytokines: Responsiveness to Maternal Hypoxia

Endocrinology ◽  
2007 ◽  
Vol 148 (2) ◽  
pp. 559-565 ◽  
Author(s):  
Jennifer K. Ho-Chen ◽  
Juan J. Bustamante ◽  
Michael J. Soares

The prolactin (PRL) family of hormones/cytokines is involved in the maintenance of pregnancy and adaptations to physiological stressors. In this report, we identify and characterize a new member of the rat PRL family, examine the impact of maternal hypoxia on placental PRL family gene expression, and investigate maternal adaptive responses to hypoxia. Perusal of the PRL gene family locus in the rat genome resulted in the identification of a putative new member of the rat PRL family. The new member is closely related to the previously reported PRL-like protein-F (PLP-F) and has been named PLP-Fβ and the originally characterized PLP-F, now termed PLP-Fα. The two proteins exhibit structural similarities but possess distinct cell- and temporal-specific expression profiles. In vivo hypoxia stimulates placental PLP-Fα and PLP-E mRNA expression in the rat and mouse, respectively. Rcho-1 trophoblast cells can differentiate into trophoblast giant cells, express PLP-Fα, and exhibit enhanced PLP-Fα mRNA levels when cultured under low oxygen tension (2%). Exposure to hypobaric hypoxia during latter part of pregnancy did not significantly impact the expression of PLP-Fβ mRNA. Finally, exposure to hypobaric hypoxia during midpregnancy led to increased maternal red blood cells, hemoglobin concentrations, hematocrit, and increased concentrations of maternal splenic mRNAs for key proteins involved in hemoglobin synthesis, erythroid Krüppel-like factor, erythroid 5-aminolevulinate synthase-2, and β-major globin. In summary, adaptive responses to maternal hypoxia include activation of placental PLP-Fα/E gene expression, which may then participate in maternal hematological adjustments required for maintaining maternal and fetal oxygen delivery.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 708-708 ◽  
Author(s):  
Alyssa Cull ◽  
Brooke Snetsinger ◽  
Michael J. Rauh

Abstract Introduction: In the context of MDS and CMML, little is known about the underlying causes of aberrant immune modulation, particularly with respect to the contribution of recurrently mutated genes. Inactivatingmutations in Tet methylcytosine dioxygenase 2 (TET2) cause loss of hydroxymethylation and a corresponding enrichment of 5-methylcytosine marks, changes which are thought to precipitate clonal dominance and monocytic skewing. Currently, the impact of TET2 loss on the properties of disease-relevant monocytes/macrophages (MΦs) is poorly understood. Therefore, our goals were to (1) characterize Tet2 expression during MΦ LPS and interferon gamma (IFNγ) treatment, (2) determine the effect of Tet2-deficiency on LPS signaling in these cells, and (3) explore how the demethylating agent 5-azacytidine (AZA) impacts abnormally expressed genes in Tet2-knockout MΦs. Methods: Peritoneal (PMΦ) and bone marrow-derived (BMMΦ) MΦs were obtained from Vav1-Cre-driven Tet2 knockout (Tet2-/-) mice in accordance with Queen's Animal Care protocols. Gene expression profiling was performed using the NanoString nCounter Mouse Immunology Gene Expression CodeSet plus 30 custom targets (591 candidate genes in total). Results: Previously, our group reported that Tet2 expression was induced 3h after LPS treatment in both primary PMΦ and BMMΦ cultures as well as RAW264.7 monocytic cells (Cull et al. Blood Abstract 2015: 646). To further understand the signalling pathways underpinning this induction, RAW264.7 cells were treated for 3h with 100ng/mL LPS alone, 10ng/mL IFNγ alone or a combination of LPS and IFNγ, as IFNγ is known to potentiate LPS signalling. As expected, LPS alone caused Tet2 mRNA levels to increase by 4- to 6-fold. The combined treatment of LPS and IFNγ lead to a 5- to 8-fold induction whereas IFNγ alone failed to increase Tet2 expression, suggesting that Tet2 induction is mainly IFNγ-independent. To evaluate relevant TLR4 signalling pathways, RAW264.7 cells were pretreated with the inhibitor compounds SP600125, BAY11-7082 and PD184352 prior to 3h LPS stimulation. Tet2 induction was abolished in cells pretreated with BAY 11-7082, an NF-κB inhibitor. Mining human ChIP-seq data from the ENCODE database indicated a number of NF-κB (p65) binding sites within the putative TET2 promoter and regulatory regions, some of which are conserved in the murine locus. ChIP studies are currently underway to evaluate binding sites of interest. We have previously reported that untreated Tet2-/- PMΦs constitutively overexpress a variety of genes involved in LPS-mediated inflammatory signalling (Cull et al. Blood Abstract 2015: 646). Based on these findings, we used NanoString gene expression analysis to evaluate the status of Tet2-/- versus Tet2f/f BMMΦs (n=3/genotype). We found gene expression in Tet2-/- BMMΦs to be very similar to control cells. In addition, early (3h) LPS gene expression profiles did not differ appreciably between Tet2-/- and Tet2f/f BMMΦs (n=3/genotype). However, at 12-24h following LPS treatment, Il1b, Il6 and Arg1 mRNA expression were significantly elevated in Tet2-/- BMMΦs. Given that IL-1β and IL-6 are both potent pro-inflammatory cytokines whereas Arg1 is associated with anti-inflammatory alternatively activated MΦfunctions (AAMΦ), we hypothesize that Tet2-/- BMMΦs are unable to resolve inflammation and compensate through overexpression of anti-inflammatory genes such as Arg1. Finally, we determined the effect that the hypomethylating agent AZA had on the mRNA expression of Il1b, Il6 and Arg1 in BMMΦs. In a pilot experiment, pooled Tet2-/- BMMΦs (n=3) were treated with 5μM AZA for 24h prior to 12h LPS stimulation. Compared to LPS alone, AZA pretreatment and subsequent LPS stimulation lead to a reduction in Arg1 (0.47-fold) and Il6 (0.65-fold) levels in Tet2-/- BMMΦs, whereas Il1b expression remained similar (0.97-fold). Based on these initial results, we hypothesize that AZA treatment leads to demethylation of genomic regions that have been enriched in methylation marks due to Tet2 loss, leading to the repression of promoters such as Arg1 and Il6. Further studies are underway to address these questions. Conclusions: In summary, we have demonstrated that Tet2 loss in MΦs leads to overexpression of genes involved in LPS signalling and LPS-related inflammation, suggesting that these cells may contribute to the abnormal immune environment found in myeloid cancers. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrea Costa ◽  
Bàrbara Reynés ◽  
Jadwiga Konieczna ◽  
Marian Martín ◽  
Miquel Fiol ◽  
...  

AbstractPeripheral blood mononuclear cells (PBMC) are widely used as a biomarker source in nutrition/obesity studies because they reflect gene expression profiles of internal tissues. In this pilot proof-of-concept study we analysed in humans if, as we previously suggested in rodents, PBMC could be a surrogate tissue to study overweight/obesity impact on lipid metabolism. Pre-selected key lipid metabolism genes based in our previous preclinical studies were analysed in PBMC of normoglycemic normal-weight (NW), and overweight-obese (OW-OB) subjects before and after a 6-month weight-loss plan. PBMC mRNA levels of CPT1A, FASN and SREBP-1c increased in the OW-OB group, according with what described in liver and adipose tissue of humans with obesity. This altered expression pattern was related to increased adiposity and early signs of metabolic impairment. Greater weight loss and/or metabolic improvement as result of the intervention was related to lower CPT1A, FASN and SREBP-1c gene expression in an adjusted linear mixed-effects regression analysis, although no gene expression recovery was observed when considering mean comparisons. Thus, human PBMC reflect lipid metabolism expression profile of energy homeostatic tissues, and early obesity-related alterations in metabolic at-risk subjects. Further studies are needed to understand PBMC usefulness for analysis of metabolic recovery in weigh management programs.


2004 ◽  
Vol 287 (4) ◽  
pp. G875-G885 ◽  
Author(s):  
Carine Strup-Perrot ◽  
Denis Mathé ◽  
Christine Linard ◽  
Dominique Violot ◽  
Fabien Milliat ◽  
...  

Radiation enteritis, a common complication of radiation therapy for abdominal and pelvic cancers, is characterized by severe transmural fibrosis associated with mesenchymal cell activation, tissue disorganization, and deposition of fibrillar collagen. To investigate the mechanisms involved in this pathological accumulation of extracellular matrix, we studied gene expression of matrix components along with that of genes involved in matrix remodeling, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Hybrid selection on high-density cDNA array, real-time RT-PCR, gelatin zymography and imunohistochemistry were used to characterize the mRNA expression profile, activity, and tissue location of extracellular matrix-related genes in radiation enteritis compared with healthy ileum. cDNA array analysis revealed a strong induction of genes coding for collagens I, III, IV, VI, and VIII, SPARC, and tenascin-C, extracellular-matrix degrading enzymes (MMP-1, -2, -3, -14, -18+19), and metalloproteinase inhibitors (TIMP-1, -2, plasminogen activator inhibitor-1) in radiation enteritis. This increase was correlated with the degree of infiltration of the mucosa by inflammatory cells, and the presence of differentiated mesenchymal cells in the submucosa and muscularis propria. Despite the fact that expression of collagens, MMPs, and TIMPs simultaneously increase, quantification of net collagen deposition shows an overall accumulation of collagen. Our results indicate that late radiation enteritis tissues are subjected to active process of fibrogenesis as well as fibrolysis, with a balance toward fibrogenesis. This demonstrates that established fibrotic tissue is not scarred fixed tissue but is subjected to a dynamic remodeling process.


2004 ◽  
Vol 16 (8) ◽  
pp. 763 ◽  
Author(s):  
Han-Seung Kang ◽  
Chae-Kwan Lee ◽  
Ju-Ran Kim ◽  
Seong-Jin Yu ◽  
Sung-Goo Kang ◽  
...  

In the present study, differential gene expression in the uteri of ovariectomised (OVX) and pro-oestrous rats (OVX v. pro-oestrus pair) was investigated using cDNA expression array analysis. Differential uterine gene expression in OVX rats and progesterone (P4)-injected OVX rats (OVX v. OVX + P4 pair) was also examined. The uterine gene expression profiles of these two sets of animals were also compared for the effects of P4 treatment. RNA samples were extracted from uterine tissues and reverse transcribed in the presence of [α32P]-dATP. Membrane sets of rat arrays were hybridised with cDNA probe sets. Northern blot analysis was used to validate the relative gene expression patterns obtained from the cDNA array. Of the 1176 cDNAs examined, 23 genes showed significant (>two-fold) changes in expression in the OVX v. pro-oestrus pair. Twenty of these genes were upregulated during pro-oestrus compared with their expression in the OVX rat uterus. In the OVX v. OVX + P4 pair, 22 genes showed significant (>two-fold) changes in gene expression. Twenty of these genes were upregulated in the OVX + P4 animals. The genes for nuclear factor I–XI, afadin, neuroligin 2, semaphorin Z, calpain 4, cyclase-associated protein homologue, thymosin β-4X and p8 were significantly upregulated in the uteri of the pro-oestrus and OVX + P4 rats of both experimental pairs compared with the OVX rat uteri. These genes appear to be under the control of P4. One of the most interesting findings of the present study is the unexpected and marked expression of the neuroligin 2 gene in the rat uterus. This gene is expressed at high levels in the central nervous system and acts as a nerve cell adhesion factor. According to Northern blot analysis, neuroligin 2 gene expression was higher during the pro-oestrus and metoestrus stages than during the oestrus and dioestrus stages of the oestrous cycle. In addition, neuroligin 2 mRNA levels were increased by both 17β-oestradiol (E2) and P4, although P4 administration upregulated gene expression to a greater extent than injection of E2. These results indicate that neuroligin 2 gene expression in the rat uterus is under the control of both E2 and P4, which are secreted periodically during the oestrous cycle.


2016 ◽  
Vol 2016 ◽  
pp. 1-15 ◽  
Author(s):  
Ben Holmes ◽  
Seung Ho Jung ◽  
Jing Lu ◽  
Jessica A. Wagner ◽  
Liudmilla Rubbi ◽  
...  

Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.


2003 ◽  
Vol 13 (2) ◽  
pp. 97-106 ◽  
Author(s):  
Christopher Ton ◽  
Dimitri Stamatiou ◽  
Choong-Chin Liew

Understanding how vertebrates respond to hypoxia can have important clinical implications. Fish have evolved the ability to survive long exposure to low oxygen levels. However, little is known about the specific changes in gene expression that result from hypoxia. In this study we used a zebrafish cDNA microarray to examine the expression of >4,500 genes in zebrafish embryos exposed to 24 h of hypoxia during development. We tested the hypotheses that hypoxia changes gene expression profile of the zebrafish embryos and that these changes can be reverted by reexposure to a normoxic (20.8% O2) environment. Our data were consistent with both of these hypotheses: indicating that zebrafish embryos undergo adaptive changes in gene expression in response to hypoxia. Our study provides a striking genetic portrait of the zebrafish embryos’ adaptive responses to hypoxic stress and demonstrates the utility of the microarray technology as a tool for analyzing complex developmental processes in the zebrafish.


2020 ◽  
Vol 7 ◽  
Author(s):  
Hari Prasad Osuru ◽  
Umadevi Paila ◽  
Keita Ikeda ◽  
Zhiyi Zuo ◽  
Robert H. Thiele

Background: Hepatic dysfunction plays a major role in adverse outcomes in sepsis. Volatile anesthetic agents may protect against organ dysfunction in the setting of critical illness and infection. The goal of this study was to study the impact of Sepsis-inflammation on hepatic subcellular energetics in animals anesthetized with both Propofol (intravenous anesthetic agent and GABA agonist) and Isoflurane (volatile anesthetic i.e., VAA).Methods: Sprague-Dawley rats were anesthetized with Propofol or isoflurane. Rats in each group were randomized to celiotomy and closure (control) or cecal ligation and puncture “CLP” (Sepsis-inflammation) for 8 h.Results: Inflammation led to upregulation in hepatic hypoxia-inducible factor-1 in both groups. Rats anesthetized with isoflurane also exhibited increases in bcl-2, inducible nitric oxide synthase, and heme oxygenase-1(HO-1) during inflammation, whereas rats anesthetized with Propofol did not. In rats anesthetized with isoflurane, decreased mRNA, protein (Complex II, IV, V), and activity levels (Complex II/III,IV,V) were identified for all components of the electron transport chain, leading to a decrease in mitochondrial ATP. In contrast, in rats anesthetized with Propofol, these changes were not identified after exposure to inflammation. RNA-Seq and real-time quantitative PCR (qPCR) expression analysis identified a substantial difference between groups (isoflurane vs. Propofol) in mitogen-activated protein kinase (MAPK) related gene expression following exposure to Sepsis-inflammation.Conclusions: Compared to rats anesthetized with Propofol, those anesthetized with isoflurane exhibit more oxidative stress, decreased oxidative phosphorylation protein expression, and electron transport chain activity and increased expression of organ-protective proteins.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3260 ◽  
Author(s):  
Kai Wang ◽  
Yi Niu ◽  
Qijun Wang ◽  
Haili Liu ◽  
Yi Jin ◽  
...  

Quantitative real-time reverse transcription PCR (RT-qPCR) has been widely used in the detection and quantification of gene expression levels because of its high accuracy, sensitivity, and reproducibility as well as its large dynamic range. However, the reliability and accuracy of RT-qPCR depends on accurate transcript normalization using stably expressed reference genes.Amorphophallusis a perennial plant with a high content of konjac glucomannan (KGM) in its corm. This crop has been used as a food source and as a traditional medicine for thousands of years. Without adequate knowledge of gene expression profiles, there has been no report of validated reference genes inAmorphophallus. In this study, nine genes that are usually used as reference genes in other crops were selected as candidate reference genes. These putative sequences of these genesAmorphophalluswere cloned by the use of degenerate primers. The expression stability of each gene was assessed in different tissues and under two abiotic stresses (heat and waterlogging) inA. albusandA. konjac. Three distinct algorithms were used to evaluate the expression stability of the candidate reference genes. The results demonstrated thatEF1-a,EIF4A,H3andUBQwere the best reference genes under heat stress inAmorphophallus. Furthermore,EF1-a,EIF4A,TUB, andRPwere the best reference genes in waterlogged conditions. By comparing different tissues from all samples, we determined thatEF1-α,EIF4A,andCYPwere stable in these sets. In addition, the suitability of these reference genes was confirmed by validating the expression of a gene encoding the small heat shock proteinSHSP, which is related to heat stress inAmorphophallus. In sum,EF1-αandEIF4Awere the two best reference genes for normalizing mRNA levels in different tissues and under various stress treatments, and we suggest using one of these genes in combination with 1 or 2 reference genes associated with different biological processes to normalize gene expression. Our results will provide researchers with appropriate reference genes for further gene expression quantification using RT-qPCR inAmorphophallus.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Zhi Chai ◽  
Yafei Lyu ◽  
Qiuyan Chen ◽  
Cheng-Hsin Wei ◽  
Lindsay Snyder ◽  
...  

Abstract Objectives To characterize and compare the impact of vitamin A (VA) deficiency on gene expression patterns in the small intestine (SI) and the colon, and to discover novel target genes in VA-related biological pathways. Methods vitamin A deficient (VAD) mice were generated by feeding VAD diet to pregnant C57/BL6 dams and their post-weaning offspring. Total mRNA extracted from SI and colon were sequenced using Illumina HiSeq 2500 platform. Differentially Expressed Gene (DEG), Gene Ontology (GO) enrichment, and Weighted Gene Co-expression Network Analysis (WGCNA) were performed to characterize expression patterns and co-expression patterns. Results The comparison between vitamin A sufficient (VAS) and VAD groups detected 49 and 94 DEGs in SI and colon, respectively. According to GO information, DEGs in the SI demonstrated significant enrichment in categories relevant to retinoid metabolic process, molecule binding, and immune function. Immunity related pathways, such as “humoral immune response” and “complement activation,” were positively associated with VA in SI. On the contrary, in colon, “cell division” was the only enriched category and was negatively associated with VA. WGCNA identified modules significantly correlated with VA status in SI and in colon. One of those modules contained five known retinoic acid targets. Therefore we have prioritized the other module members (e.g., Mbl2, Mmp9, Mmp13, Cxcl14 and Pkd1l2) to be investigated as candidate genes regulated by VA. Comparison of co-expression modules between SI and colon indicated distinct VA effects on these two organs. Conclusions The results show that VA deficiency alters the gene expression profiles in SI and colon quite differently. Some immune-related genes (Mbl2, Mmp9, Mmp13, Cxcl14 and Pkd1l2) may be novel targets under the control of VA in SI. Funding Sources NIH training grant and NIH research grant. Supporting Tables, Images and/or Graphs


2016 ◽  
Vol 113 (41) ◽  
pp. E6117-E6125 ◽  
Author(s):  
Zhipeng Zhou ◽  
Yunkun Dang ◽  
Mian Zhou ◽  
Lin Li ◽  
Chien-hung Yu ◽  
...  

Codon usage biases are found in all eukaryotic and prokaryotic genomes, and preferred codons are more frequently used in highly expressed genes. The effects of codon usage on gene expression were previously thought to be mainly mediated by its impacts on translation. Here, we show that codon usage strongly correlates with both protein and mRNA levels genome-wide in the filamentous fungus Neurospora. Gene codon optimization also results in strong up-regulation of protein and RNA levels, suggesting that codon usage is an important determinant of gene expression. Surprisingly, we found that the impact of codon usage on gene expression results mainly from effects on transcription and is largely independent of mRNA translation and mRNA stability. Furthermore, we show that histone H3 lysine 9 trimethylation is one of the mechanisms responsible for the codon usage-mediated transcriptional silencing of some genes with nonoptimal codons. Together, these results uncovered an unexpected important role of codon usage in ORF sequences in determining transcription levels and suggest that codon biases are an adaptation of protein coding sequences to both transcription and translation machineries. Therefore, synonymous codons not only specify protein sequences and translation dynamics, but also help determine gene expression levels.


Sign in / Sign up

Export Citation Format

Share Document