scholarly journals Low Phosphate Diet Exacerbates Hypercalciuria in the Jimbee Mouse Model of SGLT2 Loss-of Function

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A236-A236
Author(s):  
Kathryn M Thrailkill ◽  
Robert Clay Bunn ◽  
Philip Ray ◽  
John Leslie Fowlkes

Abstract Selective sodium-dependent glucose co-transporter 2 inhibitors (SGLT2is) are a class of anti-hyperglycemic drugs that lower blood glucose in an insulin-independent manner by inhibiting renal glucose reabsorption and promoting glucosuria. In persons with chronic kidney disease, a potential therapeutic target group for such SGLT2i treatment, dietary phosphate restriction is a mainstay of treatment for metabolic bone disease. We investigated the impact of a low phosphate (LP) diet on the physiology of Jimbee mice which, via deletion in exon 10 of the sglt2 gene, provide a model of SGLT2 loss-of-function, albeit with otherwise normal renal function. Male (M) and female (F), 12-week (wk) old, C57BL/6J (genetic control) and Jimbee mice were randomized 1:1 to a kcal/g equivalent 0.1% phosphate (LP) or 0.4% phosphate (normal P = NP) diet and monitored for 12 wks (n=9–12 per group x 8 groups). At study end (~24 wks of age), male Jimbee vs. C57BL/6J mice had lower body mass (BM: p<0.0001), more-so on LP diet (C57BL/6J vs. Jimbee; (M) NP: 31.4 ± 2.1 vs. 28.6 ± 2.0. LP: 30.8 ± 2.0 vs. 26.0 ± 1.6 g). Female mice exhibited no differences in BM. By MRI, male mice demonstrated proportionate decrements in body composition of Jimbees, as the % fat vs. lean mass and % total body water were comparable between genotypes. HbA1c and random blood glucose were no different between groups, while glucosuria was increased in M and F Jimbee mice (p<0.0001) on either diet [C57BL/6J vs. Jimbee; (M) NP: 0.2 ± 0.2 vs. 10.2 ± 4.5. LP: 0.2 ± 0.2 vs. 7.8 ± 2.0 mg/g (body weight)/day. (F) NP: 0.5 ± 0.5 vs. 8.2 ± 2.7. LP: 0.4 ± 0.3 vs. 7.0 ± 2.9 mg/g/day]. Serum calcium and phosphorus were no different between any groups. However, Jimbee mice also exhibited hypercalciuria and hyperphosphaturia (p<0.001 for both). Hypercalciuria was amplified by LP diet in both strains, with a significant diet x strain interaction in males (p=0.01) [C57BL/6J vs. Jimbee; (M) NP: 4.7 ± 2.3 vs. 15.5 ± 8.2. LP: 27.8 ± 31.5 vs. 73.4 ± 25.8 µg/g/day of urine calcium (Ca2+). (F) NP: 4.9 ± 2.8 vs. 22.7 ± 16.9. LP: 45.8 ± 29.5 vs. 62.6 ± 39.8 µg/g/day]. In contrast, hyperphosphaturia was attenuated by LP diet [C57BL/6J vs. Jimbee; (M) NP: 8.7 ± 8.5 vs. 14.7 ± 10.4. LP: 0.9 ± 0.5 vs. 3.2 ± 2.9 µg/g/day of urine phosphate (PO4). (F) NP: 4.4 ± 6.1 vs. 16.3 ± 9.7. LP: 1.2 ± 0.8 vs. 2.9 ± 1.0 µg/g/day]. Plasma PTH levels were significantly lower (p<0.001) in male Jimbee mice on either diet (C57BL/6J vs. Jimbee; NP: 81.1 ± 31.0 vs. 41.3 ± 10.7. LP: 38.2 ± 1.9 vs. 24.1 ± 6.2 pg/mL) and negatively correlated with daily urine Ca2+ (r = -0.62; p=0.006). Consistent with PTH, renal 1-α hydroxylase gene expression was decreased by ~60% in Jimbee males, specifically on LP diet (p=0.02). Together, these data suggest that, in mice, dietary phosphate restriction might exacerbate SGLT2i-related hypercalciuria during prolonged treatment, independent of PTH, becoming potentially detrimental to bone mineralization and growth over time.

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 778-P
Author(s):  
ZIYU LIU ◽  
CHAOFAN WANG ◽  
XUEYING ZHENG ◽  
SIHUI LUO ◽  
DAIZHI YANG ◽  
...  

2019 ◽  
Vol 16 (1) ◽  
pp. 40-46
Author(s):  
Rui Guo ◽  
Ruiqi Chen ◽  
Chao You ◽  
Lu Ma ◽  
Hao Li ◽  
...  

Background and Purpose: Hyperglycemia is reported to be associated with poor outcome in patients with spontaneous Intracerebral Hemorrhage (ICH), but the association between blood glucose level and outcomes in Primary Intraventricular Hemorrhage (PIVH) remains unclear. We sought to identify the parameters associated with admission hyperglycemia and analyze the impact of hyperglycemia on clinical outcome in patients with PIVH. Methods: Patients admitted to Department of Neurosurgery, West China Hospital with PIVH between 2010 and 2016 were retrospectively included in our study. Clinical, radiographic, and laboratory data were collected. Univariate and multivariate logistic regression analyses were used to identify independent predictors of poor outcomes. Results: One hundred and seventy patients were included in the analysis. Mean admission blood glucose level was 7.78±2.73 mmol/L and 10 patients (5.9%) had a history of diabetes mellitus. History of diabetes mellitus (P = 0.01; Odds Ratio [OR], 9.10; 95% Confidence Interval [CI], 1.64 to 50.54) was independent predictor of admission critical hyperglycemia defined at 8.17 mmol/L. Patients with admission critical hyperglycemia poorer outcome at discharge (P < 0.001) and 90 days (P < 0.001). After adjustment, admission blood glucose was significantly associated with discharge (P = 0.01; OR, 1.30; 95% CI, 1.06 to 1.59) and 90-day poor outcomes (P = 0.03; OR, 1.27; 95% CI, 1.03 to 1.58), as well as mortality at 90 days (P = 0.005; OR, 1.41; 95% CI, 1.11 to 1.78). In addition, admission critical hyperglycemia showed significantly increased the incidence rate of pneumonia in PIVH (P = 0.02; OR, 6.04; 95% CI 1.27 to 28.80) even after adjusting for the confounders. Conclusion: Admission blood glucose after PIVH is associated with discharge and 90-day poor outcomes, as well as mortality at 90 days. Admission hyperglycemia significantly increases the incidence rate of pneumonia in PIVH.


2016 ◽  
Vol 5 (05) ◽  
pp. 4563
Author(s):  
Tariq A. Zafar

Glycated haemoglobin (HbA1c) test indicates the blood glucose levels for the previous two to three months. Using HbA1c test may overcome many of the practical issues and prevent infections such as urinary tract infections (UTIs). The study aimed to evaluate the impact of glycemic control using HbA1c test to understand patient characteristics and UTIs prevalence. Glycemic control was evaluated by measuring HbA1c for a total of 208 diabetes patients who were regularly attending diabetes center in Al-Noor specialist hospital in Makkah.  The results showed that good and moderate glycemic controlled patients were 14.9% and 16.9% respectively while the poor glycemic patients were 68.3%. Among the good improved glycemic control, 83.9% were females, 48.4% were from age group (15-44y). Among the moderately improved glycemic control, 68.4% were females, 54.3% were from age group (45-64 y) with no significant difference. The total number of the patients with positive UTIs was 55 (26.4%) while the total number of patients with negative was UTIs 153 (73.6%). Among the positive UTIs, 76.3% were with poor glycemic control while only 12.3% and 11% were moderate and good improved glycemic control respectively. Among the negative UTIs, 65.3% were with poor glycemic control while only 19% and 15.7% were with moderate and good improved glycemic control respectively.  Prevalence of UTIs among diabetic patients was not significant (p > 0.05). It was concluded that HbA1c was useful monitoring tool for diabetes mellitus and may lead to improved outcomes. Using a HbA1c test may overcome many of the practical issues that affect the blood glucose tests.


2021 ◽  
Vol 22 (5) ◽  
pp. 2689
Author(s):  
Jianmin Si ◽  
Chris Van den Haute ◽  
Evy Lobbestael ◽  
Shaun Martin ◽  
Sarah van Veen ◽  
...  

ATP13A2, a late endo-/lysosomal polyamine transporter, is implicated in a variety of neurodegenerative diseases, including Parkinson’s disease and Kufor–Rakeb syndrome, an early-onset atypical form of parkinsonism. Loss-of-function mutations in ATP13A2 result in lysosomal deficiency as a consequence of impaired lysosomal export of the polyamines spermine/spermidine. Furthermore, accumulating evidence suggests the involvement of ATP13A2 in regulating the fate of α-synuclein, such as cytoplasmic accumulation and external release. However, no consensus has yet been reached on the mechanisms underlying these effects. Here, we aimed to gain more insight into how ATP13A2 is linked to α-synuclein biology in cell models with modified ATP13A2 activity. We found that loss of ATP13A2 impairs lysosomal membrane integrity and induces α-synuclein multimerization at the membrane, which is enhanced in conditions of oxidative stress or exposure to spermine. In contrast, overexpression of ATP13A2 wildtype (WT) had a protective effect on α-synuclein multimerization, which corresponded with reduced αsyn membrane association and stimulation of the ubiquitin-proteasome system. We also found that ATP13A2 promoted the secretion of α-synuclein through nanovesicles. Interestingly, the catalytically inactive ATP13A2 D508N mutant also affected polyubiquitination and externalization of α-synuclein multimers, suggesting a regulatory function independent of the ATPase and transport activity. In conclusion, our study demonstrates the impact of ATP13A2 on α-synuclein multimerization via polyamine transport dependent and independent functions.


2021 ◽  
pp. 1-10
Author(s):  
Varvara Kanti ◽  
Lia Puder ◽  
Irina Jahnke ◽  
Philipp Maximilian Krabusch ◽  
Jan Kottner ◽  
...  

<b><i>Background and Objectives:</i></b> Gene mutations within the leptin-melanocortin signaling pathway lead to severe early-onset obesity. Recently, a phase 2 trial evaluated new pharmacological treatment options with the MC4R agonist <i>setmelanotide</i> in patients with mutations in the genes encoding proopiomelanocortin (POMC) and leptin receptor (LEPR). During treatment with <i>setmelanotide,</i> changes in skin pigmentation were observed, probably due to off-target effects on the closely related melanocortin 1 receptor (MC1R). Here, we describe in detail the findings of dermatological examinations and measurements of skin pigmentation during this treatment over time and discuss the impact of these changes on patient safety. <b><i>Methods:</i></b> In an investigator-initiated, phase 2, open-label pilot study, 2 patients with loss-of-function POMC gene mutations and 3 patients with loss-of-function variants in LEPR were treated with the MC4R agonist <i>setmelanotide</i>. Dermatological examination, dermoscopy, whole body photographic documentation, and spectrophotometric measurements were performed at screening visit and approximately every 3 months during the course of the study. <b><i>Results:</i></b> We report the results of a maximum treatment duration of 46 months. Skin pigmentation increased in all treated patients, as confirmed by spectrophotometry. During continuous treatment, the current results indicate that elevated tanning intensity levels may stabilize over time. Lips and nevi also darkened. In red-haired study participants, hair color changed to brown after initiation of <i>setmelanotide</i> treatment. <b><i>Discussion:</i></b> <i>Setmelanotide</i> treatment leads to skin tanning and occasionally hair color darkening in both POMC- and LEPR-deficient patients. No malignant skin changes were observed in the patients of this study. However, the results highlight the importance of regular skin examinations before and during MC4R agonist treatment.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


2021 ◽  
Vol 22 (5) ◽  
pp. 2476
Author(s):  
Kento Fujiwara ◽  
Masaki Kitaura ◽  
Ayaka Tsunei ◽  
Hotaka Kusabuka ◽  
Erika Ogaki ◽  
...  

T cells that are genetically engineered to express chimeric antigen receptor (CAR) have a strong potential to eliminate tumor cells, yet the CAR-T cells may also induce severe side effects due to an excessive immune response. Although optimization of the CAR structure is expected to improve the efficacy and toxicity of CAR-T cells, the relationship between CAR structure and CAR-T cell functions remains unclear. Here, we constructed second-generation CARs incorporating a signal transduction domain (STD) derived from CD3ζ and a 2nd STD derived from CD28, CD278, CD27, CD134, or CD137, and investigated the impact of the STD structure and signaling on CAR-T cell functions. Cytokine secretion of CAR-T cells was enhanced by 2nd STD signaling. T cells expressing CAR with CD278-STD or CD137-STD proliferated in an antigen-independent manner by their STD tonic signaling. CAR-T cells incorporating CD28-STD or CD278-STD between TMD and CD3ζ-STD showed higher cytotoxicity than first-generation CAR or second-generation CARs with other 2nd STDs. The potent cytotoxicity of these CAR-T cells was not affected by inhibiting the 2nd STD signals, but was eliminated by placing the STDs after the CD3ζ-STD. Our data highlighted that CAR activity was affected by STD structure as well as by 2nd STD signaling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas Duflot ◽  
Charlotte Laurent ◽  
Anne Soudey ◽  
Xavier Fonrose ◽  
Mouad Hamzaoui ◽  
...  

AbstractThis study addressed the hypothesis that epoxyeicosatrienoic acids (EETs) synthesized by CYP450 and catabolized by soluble epoxide hydrolase (sEH) are involved in the maintenance of renal allograft function, either directly or through modulation of cardiovascular function. The impact of single nucleotide polymorphisms (SNPs) in the sEH gene EPHX2 and CYP450 on renal and vascular function, plasma levels of EETs and peripheral blood monuclear cell sEH activity was assessed in 79 kidney transplant recipients explored at least one year after transplantation. Additional experiments in a mouse model mimicking the ischemia–reperfusion (I/R) injury suffered by the transplanted kidney evaluated the cardiovascular and renal effects of the sEH inhibitor t-AUCB administered in drinking water (10 mg/l) during 28 days after surgery. There was a long-term protective effect of the sEH SNP rs6558004, which increased EET plasma levels, on renal allograft function and a deleterious effect of K55R, which increased sEH activity. Surprisingly, the loss-of-function CYP2C9*3 was associated with a better renal function without affecting EET levels. R287Q SNP, which decreased sEH activity, was protective against vascular dysfunction while CYP2C8*3 and 2C9*2 loss-of-function SNP, altered endothelial function by reducing flow-induced EET release. In I/R mice, sEH inhibition reduced kidney lesions, prevented cardiac fibrosis and dysfunction as well as preserved endothelial function. The preservation of EET bioavailability may prevent allograft dysfunction and improve cardiovascular disease in kidney transplant recipients. Inhibition of sEH appears thus as a novel therapeutic option but its impact on other epoxyfatty acids should be carefully evaluated.


Sign in / Sign up

Export Citation Format

Share Document