An axial gradient of transgene methylation in murine skeletal muscle: genomic imprint of rostrocaudal position

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 1101-1112 ◽  
Author(s):  
M.J. Donoghue ◽  
B.L. Patton ◽  
J.R. Sanes ◽  
J.P. Merlie

We previously used mice bearing a myosin light chain-chloramphenicol acetyltransferase (MLC1-CAT) transgene to show that adult muscle cells bear a heritable, cell autonomous memory of their rostrocaudal position. CAT mRNA and protein are expressed in a > 100-fold rostrocaudal gradient in skeletal muscles of developing and adult MLC1-CAT mice (Donoghue, M. J., Merlie, J. P., Rosenthal, N. and Sanes, J. R. (1991). Proc. Natl. Acad. Sci. USA 88, 5847–5851; Donoghue, M. J., Alvarez, J. D., Merlie, J. P. and Sanes, J. R. (1991). J. Cell Biol. 115, 423–434). Moreover, both in primary cultures and in myogenic cell lines prepared from individual muscles of these mice, CAT levels reflect the body position from which the myoblasts were derived (Donoghue, M.J., Morris-Valero, R., Johnson, Y.R., Merlie, J.P. and Sanes, J. R. (1992). Cell 69, 67–77). Here, we show that the methylation state of the MLC1-CAT transgene in skeletal muscles is also graded along the rostrocaudal axis: methylation levels decrease and expression levels increase in the order, jaw-->neck-->chest and forelimb-->hindlimb. Methylation levels are also approx. 10-fold higher in rostrally derived than in caudally derived myogenic cell lines, which express low and high levels of CAT, respectively. Within each cell line, undifferentiated cells (myoblasts), which do not express the transgene, and differentiated cells (myotubes), which do, are indistinguishable in methylation state. Thus, differentiation-related changes in transgene expression do not affect position-related levels of transgene methylation. On the other hand, treatment of rostrally derived lines with the demethylating agent, 5-azacytidine, decreases methylation and increases expression of the transgene. Thus, perturbation of methylation affects expression. Taken together, these results suggest that methylation provides a genomic imprint of rostrocaudal body position that may serve as a component of the positional memory that mammalian cells retain into adulthood.

1993 ◽  
Vol 3 (3) ◽  
pp. 361-372
Author(s):  
James R. Lackner ◽  
Paul DiZio

Exposure to weightlessness affects the control and appreciation of body position and orientation. In free fall the perception of one’s own orientation and that of the surroundings is dependent on the presence or absence of contact cues, whether part of the body is visible in relation to the architecturally defined verticals of the space craft, cognitive factors, and exposure history. Sensations of falling are not elicited in free fall when the eyes are closed or the visual field is stabilized. This indicates that visual and cognitive factors as well as vestibular ones must be implicated in the genesis of such sensations under normal circumstances. Position sense of the limbs is also degraded in free fall. This may be due to alterations in skeletal muscle spindle gain owing to a decreased otolith-spinal activation. We provide evidence that during initial exposure to weightlessness there is a decrease in muscle stiffness which affects movement accuracy. The altered loading of the skeletal muscles due to the head and body being weightless are shown to be significant etiological factors in space motion sickness.


1994 ◽  
Vol 125 (6) ◽  
pp. 1275-1287 ◽  
Author(s):  
T A Rando ◽  
H M Blau

The transplantation of cultured myoblasts into mature skeletal muscle is the basis for a new therapeutic approach to muscle and non-muscle diseases: myoblast-mediated gene therapy. The success of myoblast transplantation for correction of intrinsic muscle defects depends on the fusion of implanted cells with host myofibers. Previous studies in mice have been problematic because they have involved transplantation of established myogenic cell lines or primary muscle cultures. Both of these cell populations have disadvantages: myogenic cell lines are tumorigenic, and primary cultures contain a substantial percentage of non-myogenic cells which will not fuse to host fibers. Furthermore, for both cell populations, immune suppression of the host has been necessary for long-term retention of transplanted cells. To overcome these difficulties, we developed novel culture conditions that permit the purification of mouse myoblasts from primary cultures. Both enriched and clonal populations of primary myoblasts were characterized in assays of cell proliferation and differentiation. Primary myoblasts were dependent on added bFGF for growth and retained the ability to differentiate even after 30 population doublings. The fate of the pure myoblast populations after transplantation was monitored by labeling the cells with the marker enzyme beta-galactosidase (beta-gal) using retroviral mediated gene transfer. Within five days of transplantation into muscle of mature mice, primary myoblasts had fused with host muscle cells to form hybrid myofibers. To examine the immunobiology of primary myoblasts, we compared transplanted cells in syngeneic and allogeneic hosts. Even without immune suppression, the hybrid fibers persisted with continued beta-gal expression up to six months after myoblast transplantation in syngeneic hosts. In allogeneic hosts, the implanted cells were completely eliminated within three weeks. To assess tumorigenicity, primary myoblasts and myoblasts from the C2 myogenic cell line were transplanted into immunodeficient mice. Only C2 myoblasts formed tumors. The ease of isolation, growth, and transfection of primary mouse myoblasts under the conditions described here expand the opportunities to study muscle cell growth and differentiation using myoblasts from normal as well as mutant strains of mice. The properties of these cells after transplantation--the stability of resulting hybrid myofibers without immune suppression, the persistence of transgene expression, and the lack of tumorigenicity--suggest that studies of cell-mediated gene therapy using primary myoblasts can now be broadly applied to mouse models of human muscle and non-muscle diseases.


Author(s):  
B. G. Uzman ◽  
M. M. Kasac ◽  
H. Saito ◽  
A. Krishan

In conjunction with the cultivation and transplantation of cells from human tumors by the Programs of Microbiology and Immunogenetics, virus surveillance by electron microscopy has been routinely employed. Of particular interest in this regard have been 3 cell lines cultured from lymph nodes or spleen of 2 patients with Hodgkin's disease and 1 patient with Letterer-Siwe's disease. Each of these cell lines when transplanted in Syrian hamster neonates conditioned with anti-lymphocyte serum grew as serially transplantable tumors; from such transplants of the 3 cell lines cell cultures were retrieved.Herpes type virus particles (Figs. 1, 2, 3) were found in the primary cultures of all three lines, in frozen thawed aliquots of same, and in cultures retrieved from their tumors growing by serial transplantation in hamsters. No virus was detected in sections of 25 of the serially transplanted tumors. However, in 10 such tumors there were repeated instances of tubular arrays in the cisternae of the endoplasmic reticulum (Fig. 4). On serologic examination the herpes virus was shown to be the Epstein-Barr virus.


1999 ◽  
Vol 73 (4) ◽  
pp. 3338-3350 ◽  
Author(s):  
Nathalie Arbour ◽  
Geneviève Côté ◽  
Claude Lachance ◽  
Marc Tardieu ◽  
Neil R. Cashman ◽  
...  

ABSTRACT Human coronaviruses (HuCV) are recognized respiratory pathogens. Data accumulated by different laboratories suggest their neurotropic potential. For example, primary cultures of human astrocytes and microglia were shown to be susceptible to an infection by the OC43 strain of HuCV (A. Bonavia, N. Arbour, V. W. Yong, and P. J. Talbot, J. Virol. 71:800–806, 1997). We speculate that the neurotropism of HuCV will lead to persistence within the central nervous system, as was observed for murine coronaviruses. As a first step in the verification of our hypothesis, we have characterized the susceptibility of various human neural cell lines to infection by HuCV-OC43. Viral antigen, infectious virus progeny, and viral RNA were monitored during both acute and persistent infections. The astrocytoma cell lines U-87 MG, U-373 MG, and GL-15, as well as neuroblastoma SK-N-SH, neuroglioma H4, oligodendrocytic MO3.13, and the CHME-5 immortalized fetal microglial cell lines, were all susceptible to an acute infection by HuCV-OC43. Viral antigen and RNA and release of infectious virions were observed during persistent HuCV-OC43 infections (∼130 days of culture) of U-87 MG, U-373 MG, MO3.13, and H4 cell lines. Nucleotide sequences of RNA encoding the putatively hypervariable viral S1 gene fragment obtained after 130 days of culture were compared to that of initial virus input. Point mutations leading to amino acid changes were observed in all persistently infected cell lines. Moreover, an in-frame deletion was also observed in persistently infected H4 cells. Some point mutations were observed in some molecular clones but not all, suggesting evolution of the viral population and the emergence of viral quasispecies during persistent infection of H4, U-87 MG, and MO3.13 cell lines. These results are consistent with the potential persistence of HuCV-OC43 in cells of the human nervous system, accompanied by the production of infectious virions and molecular variation of viral genomic RNA.


2021 ◽  
Vol 11 (9) ◽  
pp. 3729
Author(s):  
Katarzyna Balon ◽  
Benita Wiatrak

Models based on cell cultures have become a useful tool in modern scientific research. Since primary cell lines are difficult to obtain and handle, neoplasm-derived lines like PC12 and THP-1 offer a cheap and flexible solution for neurobiological studies but require prior differentiation to serve as a neuronal or microglia model. PC12 cells constitute a suitable research model only after differentiation by incubation with nerve growth factor (NGF) and THP-1 cells after administering a differentiation factor such as phorbol 12-myristate-13-acetate (PMA). Still, quite often, studies are performed on these cancer cells without differentiation. The study aimed to assess the impact of PC12 or THP-1 cell differentiation on sensitivity to harmful factors such as Aβ25-35 (0.001–5 µM) (considered as one of the major detrimental factors in the pathophysiology of Alzheimer’s disease) or lipopolysaccharide (1–100 µM) (LPS; a pro-inflammatory factor of bacterial origin). Results showed that in most of the tests performed, the response of PC12 and THP-1 cells induced to differentiation varied significantly from the effect in undifferentiated cells. In general, differentiated cells showed greater sensitivity to harmful factors in terms of metabolic activity and DNA damage, while in the case of the free radicals, the results were heterogeneous. Obtained data emphasize the importance of proper differentiation of cell lines of neoplastic origin in neurobiological research and standardization of cell culture handling protocols to ensure reliable results.


2021 ◽  
Vol 22 (3) ◽  
pp. 1391
Author(s):  
Andrey Kropotov ◽  
Veronika Kulikova ◽  
Kirill Nerinovski ◽  
Alexander Yakimov ◽  
Maria Svetlova ◽  
...  

Nicotinamide riboside (NR), a new form of vitamin B3, is an effective precursor of nicotinamide adenine dinucleotide (NAD+) in human and animal cells. The introduction of NR into the body effectively increases the level of intracellular NAD+ and thereby restores physiological functions that are weakened or lost in experimental models of aging and various pathologies. Despite the active use of NR in applied biomedicine, the mechanism of its transport into mammalian cells is currently not understood. In this study, we used overexpression of proteins in HEK293 cells, and metabolite detection by NMR, to show that extracellular NR can be imported into cells by members of the equilibrative nucleoside transporter (ENT) family ENT1, ENT2, and ENT4. After being imported into cells, NR is readily metabolized resulting in Nam generation. Moreover, the same ENT-dependent mechanism can be used to import the deamidated form of NR, nicotinic acid riboside (NAR). However, NAR uptake into HEK293 cells required the stimulation of its active utilization in the cytosol such as phosphorylation by NR kinase. On the other hand, we did not detect any NR uptake mediated by the concentrative nucleoside transporters (CNT) CNT1, CNT2, or CNT3, while overexpression of CNT3, but not CNT1 or CNT2, moderately stimulated NAR utilization by HEK293 cells.


2021 ◽  
Vol 11 (6) ◽  
pp. 2534
Author(s):  
Henrike Rebl ◽  
Claudia Bergemann ◽  
Sebastian Rakers ◽  
Barbara Nebe ◽  
Alexander Rebl

The present study provides the fundamental results for the treatment of marine organisms with cold atmospheric pressure plasma. In farmed fish, skin lesions may occur as a result of intensive fish farming. Cold atmospheric plasma offers promising medical potential in wound healing processes. Since the underlying plasma-mediated mechanisms at the physical and cellular level are yet to be fully understood, we investigated the sensitivity of three fish cell lines to plasma treatment in comparison with mammalian cells. We varied (I) cell density, (II) culture medium, and (III) pyruvate concentration in the medium as experimental parameters. Depending on the experimental setup, the plasma treatment affected the viability of the different cell lines to varying degrees. We conclude that it is mandatory to use similar cell densities and an identical medium, or at least a medium with identical antioxidant capacity, when studying plasma effects on different cell lines. Altogether, fish cells showed a higher sensitivity towards plasma treatment than mammalian cells in most of our setups. These results should increase the understanding of the future treatment of fish.


1987 ◽  
Vol 7 (6) ◽  
pp. 2286-2293 ◽  
Author(s):  
V C Bond ◽  
B Wold

Poly-L-ornithine has been used to introduce DNA and RNA into mammalian cells in culture. Ornithine-mediated DNA transfer has several interesting and potentially useful properties. The procedure is technically straightforward and is easily applied to either small or large numbers of recipient cells. The efficiency of transformation is high. Under optimal conditions, 1 to 2% of recipient mouse L cells take up and continue to express selectable marker genes. DNA content of transformants can be varied reproducibly, yielding cells with just one or two copies of the new gene under one set of conditions, while under a different set of conditions 25 to 50 copies are acquired. Cotransformation and expression of physically unlinked genes occur at high efficiency under conditions favoring multiple-copy transfer. Polyornithine promotes gene transfer into cell lines other than L cells. These include Friend erythroleukemia cells and NIH 3T3 cells. Both are transformed about 1 order of magnitude more efficiently by this procedure than by standard calcium phosphate products. However, the method does not abolish the large transformation efficiency differences between these cell lines that have been observed previously by other techniques. (vi) mRNA synthesized in vitro was also introduced into cells by this method. The RNA was translated resulting in a transient accumulation of the protein product.


1988 ◽  
Vol 8 (10) ◽  
pp. 4185-4189 ◽  
Author(s):  
J A Greenspan ◽  
F M Xu ◽  
R L Davidson

The molecular mechanisms of ethyl methanesulfonate-induced reversion in mammalian cells were studied by using as a target a gpt gene that was integrated chromosomally as part of a shuttle vector. Murine cells containing mutant gpt genes with single base changes were mutagenized with ethyl methanesulfonate, and revertant colonies were isolated. Ethyl methanesulfonate failed to increase the frequency of revertants for cell lines with mutant gpt genes carrying GC----AT transitions or AT----TA transversions, whereas it increased the frequency 50-fold to greater than 800-fold for cell lines with mutant gpt genes carrying AT----GC transitions and for one cell line with a GC----CG transversion. The gpt genes of 15 independent revertants derived from the ethyl methanesulfonate-revertible cell lines were recovered and sequenced. All revertants derived from cell lines with AT----GC transitions had mutated back to the wild-type gpt sequence via GC----AT transitions at their original sites of mutation. Five of six revertants derived from the cell line carrying a gpt gene with a GC----CG transversion had mutated via GC----AT transition at the site of the original mutation or at the adjacent base in the same triplet; these changes generated non-wild-type DNA sequences that code for non-wild-type amino acids that are apparently compatible with xanthine-guanine phosphoribosyltransferase activity. The sixth revertant had mutated via CG----GC transversion back to the wild-type sequence. The results of this study define certain amino acid substitutions in the xanthine-guanine phosphoribosyltransferase polypeptide that are compatible with enzyme activity. These results also establish mutagen-induced reversion analysis as a sensitive and specific assay for mutagenesis in mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document