Gli2, but notGli1, is required for initial Shh signaling and ectopic activation of the Shh pathway

Development ◽  
2002 ◽  
Vol 129 (20) ◽  
pp. 4753-4761 ◽  
Author(s):  
C. Brian Bai ◽  
Wojtek Auerbach ◽  
Joon S. Lee ◽  
Daniel Stephen ◽  
Alexandra L. Joyner

The Shh signaling pathway is required in many mammalian tissues for embryonic patterning, cell proliferation and differentiation. In addition, inappropriate activation of the pathway has been implicated in many human tumors. Based on transfection assays and gain-of-function studies in frog and mouse, the transcription factor Gli1 has been proposed to be a major mediator of Shh signaling. To address whether this is the case in mouse, we generated a Gli1 null allele expressing lacZ. Strikingly, Gli1 is not required for mouse development or viability. Of relevance, we show that all transcription of Gli1 in the nervous system and limbs is dependent on Shh and, consequently, Gli1 protein is normally not present to transduce initial Shh signaling. To determine whether Gli1 contributes to the defects seen when the Shh pathway is inappropriately activated and Gli1 transcription is induced, Gli1;Ptc double mutants were generated. We show that Gli1 is not required for the ectopic activation of the Shh signaling pathway or to the early embryonic lethal phenotype in Ptc null mutants. Of significance, we found instead that Gli2 is required for mediating some of the inappropriate Shh signaling in Ptc mutants. Our studies demonstrate that, in mammals, Gli1 is not required for Shh signaling and that Gli2 mediates inappropriate activation of the pathway due to loss of the negative regulator Ptc.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jing Du ◽  
Weiwei Chen ◽  
Lijuan Yang ◽  
Juanjuan Dai ◽  
Jiwei Guo ◽  
...  

Abstract Deregulated Sonic Hedgehog (SHH) pathway facilitates the initiation, progression, and metastasis of Non-small cell lung cancer (NSCLC), confers drug resistance and renders a therapeutic interference option to lung cancer patients with poor prognosis. In this study, we screened and evaluated the specificity of a Chinese herb Scutellariabarbata D. Don extraction (SBE) in repressing SHH signaling pathway to block NSCLC progression. Our study confirmed that aberrant activation of the SHH signal pathway conferred more proliferative and invasive phenotypes to human lung cancer cells. This study revealed that SBE specifically repressed SHH signaling pathway to interfere the SHH-mediated NSCLC progression and metastasis via arresting cell cycle progression. We also found that SBE significantly sensitized lung cancer cells to chemotherapeutic agent DDP via repressing SHH components in vitro and in vivo. Mechanistic investigations indicated that SBE transcriptionally and specifically downregulated SMO and consequently attenuated the activities of GLI1 and its downstream targets in SHH signaling pathway, which interacted with cell cycle checkpoint enzymes to arrest cell cycle progression and lead to cellular growth inhibition and migration blockade. Collectively, our results suggest SBE as a novel drug candidate for NSCLC which specifically and sensitively targets SHH signaling pathway.


2019 ◽  
Vol 7 ◽  
pp. 3
Author(s):  
Lu Zheng ◽  
Chen Rui ◽  
Hao Zhang ◽  
Jing Chen ◽  
Xiuzhi Jia ◽  
...  

The Sonic hedgehog (SHH) signaling pathway is essential for embryonic development and tissue regeneration. The dysfunction of SHH pathway is involved in a variety of diseases, including cancer, birth defects, and other diseases. Here we reviewed recent studies on main molecules involved in the SHH signaling pathway, specifically focused on their function in epithelial tissue and appendages development, including epidermis, touch dome, hair, sebaceous gland, mammary gland, tooth, nail, gastric epithelium, and intestinal epithelium. The advance in understanding the SHH signaling pathway will give us more clues to the mechanisms of tissue repair and regeneration, as well as the development of new treatment for diseases related to dysregulation of SHH signaling pathway.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 970
Author(s):  
Pan ◽  
Hu ◽  
Wang ◽  
Zhou ◽  
Zhang ◽  
...  

c-Jun N-terminal kinases (JNKs) regulate cell proliferation and differentiation via phosphorylating such transcription factors as c-Jun. The function of JNKs in retinogenesis remains to be elucidated. Here, we report that knocking out Jnk1, but not Jnk2, increased the number of photoreceptors, thus enhancing the electroretinogram (ERG) responses. Intriguingly, Notch1, a well-established negative regulator of photoreceptor genesis, was significantly attenuated in Jnk1 knockout (KO) mice compared to wild-type mice. Mechanistically, light specifically activated JNK1 to phosphorylate c-Jun, which in turn induced Notch1 transcription. The identified JNK1–c-Jun–Notch1 axis strongly inhibited photoreceptor-related transcriptional factor expression and ultimately impaired photoreceptor opsin expression. Our study uncovered an essential function of JNK1 in retinogenesis, revealing JNK1 as a potential candidate for targeting ophthalmic diseases.


2019 ◽  
Vol 20 (8) ◽  
pp. 829-843 ◽  
Author(s):  
Yang Zhou ◽  
Joy Jin ◽  
Mei Feng ◽  
Di Zhu

Inflammation is the first response occurring after damage or infection, which is a defensive process for the body. It is well known that excessive inflammation can lead to further diseases such as fibrosis. But a regenerative inflammatory response can accelerate the process of repairing injury, in which a variety of cytokines, immune cells, and stem cells are involved. The Wnt signaling pathway was originally known in the field of development. Recently, its role in regenerative inflammation has gradually been established. Wnt signaling can regulate cell proliferation and differentiation through regulating participants of regenerative inflammation. Canonical and noncanonical Wnt signaling pathways are coordinated to maintain homeostasis. Based on the process of regenerative inflammation and recent research in this field, this paper reviews how the Wnt signaling pathway interact with other cells and pathways.


2013 ◽  
Vol 69 (12) ◽  
pp. 2563-2579 ◽  
Author(s):  
Amy L. Cherry ◽  
Csaba Finta ◽  
Mikael Karlström ◽  
Qianren Jin ◽  
Thomas Schwend ◽  
...  

Hedgehog signalling plays a fundamental role in the control of metazoan development, cell proliferation and differentiation, as highlighted by the fact that its deregulation is associated with the development of many human tumours. SUFU is an essential intracellular negative regulator of mammalian Hedgehog signalling and acts by binding and modulating the activity of GLI transcription factors. Despite its central importance, little is known about SUFU regulation and the nature of SUFU–GLI interaction. Here, the crystal and small-angle X-ray scattering structures of full-length human SUFU and its complex with the key SYGHL motif conserved in all GLIs are reported. It is demonstrated that GLI binding is associated with major conformational changes in SUFU, including an intrinsically disordered loop that is also crucial for pathway activation. These findings reveal the structure of the SUFU–GLI interface and suggest a mechanism for an essential regulatory step in Hedgehog signalling, offering possibilities for the development of novel pathway modulators and therapeutics.


2012 ◽  
Vol 197 (6) ◽  
pp. 789-800 ◽  
Author(s):  
Karel F. Liem ◽  
Alyson Ashe ◽  
Mu He ◽  
Peter Satir ◽  
Jennifer Moran ◽  
...  

Two intraflagellar transport (IFT) complexes, IFT-A and IFT-B, build and maintain primary cilia and are required for activity of the Sonic hedgehog (Shh) pathway. A weak allele of the IFT-A gene, Ift144, caused subtle defects in cilia structure and ectopic activation of the Shh pathway. In contrast, strong loss of IFT-A, caused by either absence of Ift144 or mutations in two IFT-A genes, blocked normal ciliogenesis and decreased Shh signaling. In strong IFT-A mutants, the Shh pathway proteins Gli2, Sufu, and Kif7 localized correctly to cilia tips, suggesting that these pathway components were trafficked by IFT-B. In contrast, the membrane proteins Arl13b, ACIII, and Smo failed to localize to primary cilia in the absence of IFT-A. We propose that the increased Shh activity seen in partial loss-of-function IFT-A mutants may be a result of decreased ciliary ACIII and that the loss of Shh activity in the absence of IFT-A is a result of severe disruptions of cilia structure and membrane protein trafficking.


Sign in / Sign up

Export Citation Format

Share Document