The development of a method for the preparation of rat intestinal epithelial cell primary cultures

1992 ◽  
Vol 101 (1) ◽  
pp. 219-231 ◽  
Author(s):  
G.S. Evans ◽  
N. Flint ◽  
A.S. Somers ◽  
B. Eyden ◽  
C.S. Potten

We describe a reproducible method for growing small intestinal epithelium (derived from the suckling rat intestine) in short-term (primary) cultures. Optimal culture conditions were determined by quantitative assays of proliferation (i.e. changes in cellularity and DNA synthesis). Isolation of the epithelia and, significantly, preservation of its three-dimensional integrity was achieved using a collagenase/dispase digestion technique. Purification of the epithelium was also facilitated by the use of a simple differential sedimentation method. The results presented below support the idea that proliferation of normal gut epithelium ex vivo is initially dependent upon the maintenance of the structural integrity of this tissue and upon factors produced by heterologous mesenchymal cells. Proliferation in vitro was also critically dependent upon the quality of the medium and constituents used. Cultures reached confluence within 10–14 days and consisted of epithelial colonies together with varying amounts of smooth-muscle-like cells. Cultures have been maintained for periods up to one month, but the longer-term potential for growth by sub-culturing has not been examined. Strategies for reducing the proliferation of these non-epithelial cells are also described.

Author(s):  
Yu Takahashi ◽  
Yu Inoue ◽  
Keitaro Kuze ◽  
Shintaro Sato ◽  
Makoto Shimizu ◽  
...  

Abstract Intestinal organoids better represent in vivo intestinal properties than conventionally used established cell lines in vitro. However, they are maintained in three-dimensional culture conditions that may be accompanied by handling complexities. We characterized the properties of human organoid-derived two-dimensionally cultured intestinal epithelial cells (IECs) compared with those of their parental organoids. We found that the expression of several intestinal markers and functional genes were indistinguishable between monolayer IECs and organoids. We further confirmed that their specific ligands equally activate intestinal ligand-activated transcriptional regulators in a dose-dependent manner. The results suggest that culture conditions do not significantly influence the fundamental properties of monolayer IECs originating from organoids, at least from the perspective of gene expression regulation. This will enable their use as novel biological tools to investigate the physiological functions of the human intestine.


2021 ◽  
Author(s):  
R. Hugh F. Bender ◽  
Benjamen T O'Donnell ◽  
Bhupinder Shergill ◽  
Brittany Q Pham ◽  
Damie J Juat ◽  
...  

Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively by β cells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of islet β cells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlying β cell damage in diabetes rely on in vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing -- key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel, ex vivo platform for studying human islet biology in both health and disease.


2021 ◽  
Author(s):  
Nicola Elvassore ◽  
Anna Urciuolo ◽  
Giovanni Giobbe ◽  
Yixiao Dong ◽  
Federica Michielin ◽  
...  

Abstract Tissue architecture is a driving force for morphogenetic processes during development as well as for several physiological and regenerative responses. Far from being a passive static environment, tissue architecture is highly dynamic. Hydrogel technology reproduces in vitro geometrical and mechanical constrains that control the three-dimensional self-organization of (3D) organoids and organ-like cultures. This control is restricted to the initial culture conditions and cannot be adapted to the dynamic morphological changes of complex 3D cultures during their developmental trajectory. Here, we developed a method that overcomes this spatiotemporal limit. Using 2P crosslinking approach, high resolution 3D hydrogel structures can be fabricated within pre-existing hydrogel with spatiotemporal (four-dimensional, 4D) control relative to ex-vivo organotypic or organoid culture. This hydrogel-in-hydrogel bioprinting approach enables to continuously instruct the self-organization of the evolving 3D organ-like cultures.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35008 ◽  
Author(s):  
Elhaseen Elamin ◽  
Daisy Jonkers ◽  
Kati Juuti-Uusitalo ◽  
Sven van IJzendoorn ◽  
Freddy Troost ◽  
...  

Author(s):  
Nataly Cruz Rodríguez ◽  
Johanna Lineros ◽  
Carol Stefany Rodríguez ◽  
Lina María Martínez ◽  
Josefa Antonia Rodríguez

2020 ◽  
Author(s):  
Ailiang Zhang ◽  
Helena Paidassi ◽  
Adam Lacy-Hulbert ◽  
John Savill

In the mammalian gut CD103+ve myeloid DCs are known to suppress inflammation threatened by luminal bacteria, but stimuli driving DC precursor differentiation towards this beneficial phenotype are incompletely understood. We isolated CD11+ve DCs from mesenteric lymph nodes (MLNs) of healthy mice; CD103+ve DCs were 8-24 folds more likely than CD103-ve DCs to exhibit extensive of prior phagocytosis of apoptotic intestinal epithelial cells. However, CD103+ve and CD103-ve MLN DCs exhibited similar ex vivo capacity to ingest apoptotic cells, indicating that apoptotic cells might drive immature DC differentiation towards the CD103+ve phenotype. When cultured with apoptotic cells, myeloid DC precursors isolated from murine bone marrow and characterised as lineage-ve CD103-ve, displayed enhanced expression of CD103 and β8 integrin and acquired increased capacity to induce Tregs after 7d in vitro. However, DC precursors isolated from α v -tie2 mice lacking α v integrins in the myeloid line exhibited reduced binding of apoptotic cells and complete deficiency in the capacity of apoptotic cells and/or latent TGF-β1 to enhance CD103 expression in culture, whereas active TGF-β1 increased DC precursor CD103 expression irrespective of α v expression. Fluorescence microscopy revealed clustering of α v integrin chains and latent TGF-β1 at points of contact between DC precursors and apoptotic cells. We conclude that myeloid DC precursors can deploy α v integrin to orchestrate binding of apoptotic cells, activation of latent TGF-β1 and acquisition of the immunoregulatory CD103+ve β8+ve DC phenotype. This implies that a hitherto unrecognised consequence of apoptotic cell interaction with myeloid phagocytes is programming that prevents inflammation.


2021 ◽  
Vol 13 ◽  
pp. 175883592110598
Author(s):  
Inken Flörkemeier ◽  
Tamara N. Steinhauer ◽  
Nina Hedemann ◽  
Magnus Ölander ◽  
Per Artursson ◽  
...  

Background: Ovarian cancer (OvCa) constitutes a rare and highly aggressive malignancy and is one of the most lethal of all gynaecologic neoplasms. Due to chemotherapy resistance and treatment limitations because of side effects, OvCa is still not sufficiently treatable. Hence, new drugs for OvCa therapy such as P8-D6 with promising antitumour properties have a high clinical need. The benzo[ c]phenanthridine P8-D6 is an effective inductor of apoptosis by acting as a dual topoisomerase I/II inhibitor. Methods: In the present study, the effectiveness of P8-D6 on OvCa was investigated in vitro. In various OvCa cell lines and ex vivo primary cells, the apoptosis induction compared with standard therapeutic agents was determined in two-dimensional monolayers. Expanded by three-dimensional and co-culture, the P8-D6 treated cells were examined for changes in cytotoxicity, apoptosis rate and membrane integrity via scanning electron microscopy (SEM). Likewise, the effects of P8-D6 on non-cancer human ovarian surface epithelial cells and primary human hepatocytes were determined. Results: This study shows a significant P8-D6-induced increase in apoptosis and cytotoxicity in OvCa cells which surpasses the efficacy of well-established drugs like cisplatin or the topoisomerase inhibitors etoposide and topotecan. Non-cancer cells were affected only slightly by P8-D6. Moreover, no hepatotoxic effect in in vitro studies was detected. Conclusion: P8-D6 is a strong and rapid inductor of apoptosis and might be a novel treatment option for OvCa therapy.


2019 ◽  
Vol 39 (1) ◽  
pp. 75-94 ◽  
Author(s):  
Hannah Pierson ◽  
Haojun Yang ◽  
Svetlana Lutsenko

Many metals have biological functions and play important roles in human health. Copper (Cu) is an essential metal that supports normal cellular physiology. Significant research efforts have focused on identifying the molecules and pathways involved in dietary Cu uptake in the digestive tract. The lack of an adequate in vitro model for assessing Cu transport processes in the gut has led to contradictory data and gaps in our understanding of the mechanisms involved in dietary Cu acquisition. The recent development of organoid technology has provided a tractable model system for assessing the detailed mechanistic processes involved in Cu utilization and transport in the context of nutrition. Enteroid (intestinal epithelial organoid)-based studies have identified new links between intestinal Cu metabolism and dietary fat processing. Evidence for a metabolic coupling between the dietary uptake of Cu and uptake of fat (which were previously thought to be independent) is a new and exciting finding that highlights the utility of these three-dimensional primary culture systems. This review has three goals: ( a) to critically discuss the roles of key Cu transport enzymes in dietary Cu uptake; ( b) to assess the use, utility, and limitations of organoid technology in research into nutritional Cu transport and Cu-based diseases; and ( c) to highlight emerging connections between nutritional Cu homeostasis and fat metabolism.


2006 ◽  
Vol 96 (11) ◽  
pp. 671-684 ◽  
Author(s):  
Alexandre Fontayne ◽  
Karen Vanhoorelbeke ◽  
Inge Pareyn ◽  
Isabel Van Rompaey ◽  
Muriel Meiring ◽  
...  

SummaryFab-fragments of the monoclonal antibody 6B4, raised against human glycoprotein Ibα (GPIbα), have a powerful antithrombotic effect in baboons by blocking the GPIbα binding site for von Willebrand factor (VWF), without significant prolongation of the skin bleeding time. In order to bring this antibody to the clinic,we here humanized for the first time an anti-human GPIbα by variable-domain resurfacing guided by computer modeling. First, the genes coding for the variable regions of the heavy and light chains of 6B4 were cloned and sequenced. Based on this,a three-dimensional structure of the Fv-fragment was constructed by using homology-based modeling, and with this and comparison with antibodies with known structure,”murine” putative immunogenic residues which are exposed, were changed for “human-like” residues. The humanized Fab-fragment, h6B4-Fab, was constructed in the pKaneo vector system, expressed and purified and showed in vitro an unaltered, even slightly higher binding affinity for its antigen than the murine form as determined by different ELISA set-ups and surface plasmon resonance. Finally, injection of doses of 0.1 to 1.5 mg/kg of h6B4-Fab in baboons showed that both pharmacokinetics and ex-vivo bio-activity of the molecule were to a large extent preserved.In conclusion, the method used here to humanize 6B4 by resurfacing resulted in a fully active derivative, which is now ready for further development.


2015 ◽  
Vol 27 (1) ◽  
pp. 136
Author(s):  
M. Hoelker ◽  
A. Kassens ◽  
E. Held ◽  
C. Wrenzycki ◽  
U. Besenfelder ◽  
...  

The in vitro production (IVP) of bovine embryos is a well-established technique that has been available for nearly 20 years. However, there remain major differences between IVP-derived blastocysts and their in vivo-derived counterparts. Many studies have pointed out that most of these differences are due to the in vitro developmental environment. To circumvent these negative effects due to in vitro culture conditions, a new method – intrafollicular oocyte transfer (IFOT) – was established in the present study. Using modified ovum pick-up (OPU) equipment, in vitro-matured oocytes derived from slaughterhouse ovaries were injected into the dominant preovulatory follicle of synchronised heifers (follicular recipients) enabling subsequent ovulation, in vivo fertilization, and in vivo development. A total of 810 in vitro-matured oocytes were transferred into 14 heifers. Subsequently, 222 embryos (27.3%) were recovered after uterine flushing at Day 7. Based on the number of cleaved embryonic stages, 64.2% developed to the blastocyst stage, which did not differ from the IVP-derived embryos (58.2%). Interestingly, lipid content of IFOT-derived blastocysts did not differ from the fully in vivo-produced embryos, whereas IVP-derived blastocysts showed significantly higher lipid droplet accumulation compared with fully in vivo-derived and IFOT-derived blastocysts (P < 0.05). Accordingly, IFOT blastocysts showed significantly higher survival rates after cryopreservation than complete IVP-derived embryos (77% v. 10%), which might be attributed to a lower degree of lipid accumulation. In agreement, transfer of frozen-thawed IFOT blastocysts to synchronized recipients (uterine recipients) resulted in much higher pregnancy rates compared with transfer of IVP-derived blastocysts (42.1 v. 13.8%) but did not differ from frozen-thawed ex vivo blastocysts (52.4%). Of these presumed IFOT pregnancies, 7 went to term, and microsatellite analysis confirmed that 5 calves were indeed derived from IFOT, whereas 2 were caused by fertilization of the follicular recipient's own oocyte after AI. Taken together, IFOT-derived blastocysts closely resemble in vivo-derived blastocysts, confirming earlier suggestions that the ability to develop to the blastocyst stage is already determined in the matured oocyte, whereas the quality in terms of lipid content and survival rate after cryopreservation is affected by the environment thereafter. However, to the best of our knowledge, this is the first study reporting healthy calves after intrafollicular transfer of in vitro-matured oocytes.


Sign in / Sign up

Export Citation Format

Share Document