Vimentin's tail interacts with actin-containing structures in vivo

1994 ◽  
Vol 107 (6) ◽  
pp. 1609-1622 ◽  
Author(s):  
R.B. Cary ◽  
M.W. Klymkowsky ◽  
R.M. Evans ◽  
A. Domingo ◽  
J.A. Dent ◽  
...  

The tail domain of the intermediate filament (IF) protein vimentin is unnecessary for IF assembly in vitro. To study the role of vimentin's tail in vivo, we constructed a plasmid that directs the synthesis of a ‘myc-tagged’ version of the Xenopus vimentin-1 tail domain in bacteria. This polypeptide, mycVimTail, was purified to near homogeneity and injected into cultured Xenopus A6 cells. In these cells the tail polypeptide co-localized with actin even in the presence of cytochalasin. Two myc-tagged control polypeptides argue for the specificity of this interaction. First, a similarly myc-tagged lamin tail domain localizes to the nucleus, indicating that the presence of the myc tag did not itself confer the ability to co-localize with actin (Hennekes and Nigg (1994) J. Cell Sci. 107, 1019–1029). Second, a myc-tagged polypeptide with a molecular mass and net charge at physiological pH (i.e. -4) similar to that of the mycVimTail polypeptide, failed to show any tendency to associate with actin-containing structures, indicating that the interaction between mycVimTail and actin-containing structures was not due to a simple ionic association. Franke (1987; Cell Biol. Int. Rep. 11, 831) noted a similarity in the primary sequence between the tail of the type I keratin DG81A and vimentin. To test whether the DG81A tail interacted with actin-containing structures, we constructed and purified myc-tagged DG81A tail polypeptides. Unexpectedly, these keratin tail polypeptides were largely insoluble under physiological conditions and formed aggregates at the site of injection. While this insolubility made it difficult to determine if they associated with actin-containing structures, it does provide direct evidence that the tails of vimentin and DG81A differ dramatically in their physical properties. Our data suggest that vimentin's tail domain has a highly extended structure, binds to actin-containing structures and may mediate the interaction between vimentin filaments and microfilaments involved in the control of vimentin filament organization (Hollenbeck et al. (1989) J. Cell Sci. 92, 621; Tint et al. (1991) J. Cell Sci. 98, 375).

2017 ◽  
Vol 312 (3) ◽  
pp. G219-G227 ◽  
Author(s):  
Leonie Beljaars ◽  
Sara Daliri ◽  
Christa Dijkhuizen ◽  
Klaas Poelstra ◽  
Reinoud Gosens

WNT-5A is a secreted growth factor that belongs to the noncanonical members of the Wingless-related MMTV-integration family. Previous studies pointed to a connection between WNT-5A and the fibrogenic factor TGF-β warranting further studies into the functional role of WNT-5A in liver fibrosis. Therefore, we studied WNT-5A expressions in mouse and human fibrotic livers and examined the relation between WNT-5A and various fibrosis-associated growth factors, cytokines, and extracellular matrix proteins. WNT-5A gene and protein expressions were significantly increased in fibrotic mouse and human livers compared with healthy livers. Regression or therapeutic intervention in mice resulted in decreased hepatic WNT-5A levels paralleled by lower collagen levels. Immunohistochemical analysis showed WNT-5A staining in fibrotic septa colocalizing with desmin staining indicating WNT-5A expression in myofibroblasts. In vitro studies confirmed WNT-5A expression in this cell type and showed that TGF-β significantly enhanced WNT-5A expression in contrast to PDGF-BB and proinflammatory cytokines IL-1β and TNF-α. Additionally, TGF-β induces the expression of the WNT receptors FZD2 and FZD8. After silencing of WNT-5A, reduced levels of collagen type I, vimentin, and fibronectin in TGF-β-stimulated myofibroblasts were measured compared with nonsilencing siRNA-treated controls. Interestingly, the antifibrotic cytokine IFNγ suppressed WNT-5A in vitro and in vivo. IFNγ-treated fibrotic mice showed significantly less WNT-5A expression compared with untreated fibrotic mice. In conclusion, WNT-5A paralleled collagen I levels in fibrotic mouse and human livers. WNT-5A expression in myofibroblasts is induced by the profibrotic factor TGF-β and plays an important role in TGF-β-induced regulation of fibrotic matrix proteins, whereas its expression can be reversed upon treatment, both in vitro and in vivo. NEW & NOTEWORTHY This study describes the localization and functional role of WNT-5A in human and mouse fibrotic livers. Hepatic WNT-5A expression parallels collagen type I expression. In vivo and in vitro, the myofibroblasts were identified as the key hepatic cells producing WNT-5A. WNT-5A is under control of TGF-β and its activities are primarily profibrotic.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria Pujantell ◽  
Roger Badia ◽  
Iván Galván-Femenía ◽  
Edurne Garcia-Vidal ◽  
Rafael de Cid ◽  
...  

AbstractInfection by human papillomavirus (HPV) alters the microenvironment of keratinocytes as a mechanism to evade the immune system. A-to-I editing by ADAR1 has been reported to regulate innate immunity in response to viral infections. Here, we evaluated the role of ADAR1 in HPV infection in vitro and in vivo. Innate immune activation was characterized in human keratinocyte cell lines constitutively infected or not with HPV. ADAR1 knockdown induced an innate immune response through enhanced expression of RIG-I-like receptors (RLR) signaling cascade, over-production of type-I IFNs and pro-inflammatory cytokines. ADAR1 knockdown enhanced expression of HPV proteins, a process dependent on innate immune function as no A-to-I editing could be identified in HPV transcripts. A genetic association study was performed in a cohort of HPV/HIV infected individuals followed for a median of 6 years (range 0.1–24). We identified the low frequency haplotype AACCAT significantly associated with recurrent HPV dysplasia, suggesting a role of ADAR1 in the outcome of HPV infection in HIV+ individuals. In summary, our results suggest that ADAR1-mediated innate immune activation may influence HPV disease outcome, therefore indicating that modification of innate immune effectors regulated by ADAR1 could be a therapeutic strategy against HPV infection.


2008 ◽  
Vol 205 (8) ◽  
pp. 1929-1938 ◽  
Author(s):  
César Muñoz-Fontela ◽  
Salvador Macip ◽  
Luis Martínez-Sobrido ◽  
Lauren Brown ◽  
Joseph Ashour ◽  
...  

Tumor suppressor p53 is activated by several stimuli, including DNA damage and oncogenic stress. Previous studies (Takaoka, A., S. Hayakawa, H. Yanai, D. Stoiber, H. Negishi, H. Kikuchi, S. Sasaki, K. Imai, T. Shibue, K. Honda, and T. Taniguchi. 2003. Nature. 424:516–523) have shown that p53 is also induced in response to viral infections as a downstream transcriptional target of type I interferon (IFN) signaling. Moreover, many viruses, including SV40, human papillomavirus, Kaposi's sarcoma herpesvirus, adenoviruses, and even RNA viruses such as polioviruses, have evolved mechanisms designated to abrogate p53 responses. We describe a novel p53 function in the activation of the IFN pathway. We observed that infected mouse and human cells with functional p53 exhibited markedly decreased viral replication early after infection. This early inhibition of viral replication was mediated both in vitro and in vivo by a p53-dependent enhancement of IFN signaling, specifically the induction of genes containing IFN-stimulated response elements. Of note, p53 also contributed to an increase in IFN release from infected cells. We established that this p53-dependent enhancement of IFN signaling is dependent to a great extent on the ability of p53 to activate the transcription of IFN regulatory factor 9, a central component of the IFN-stimulated gene factor 3 complex. Our results demonstrate that p53 contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its functions as a proapoptotic and tumor suppressor gene.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1397-1397
Author(s):  
Claude Capron ◽  
Catherine Lacout ◽  
Yann Lecluse ◽  
Valérie Jalbert ◽  
Elisabeth Cramer Bordé ◽  
...  

Abstract TGF-β1 is a cytokine with pleiotropic effects. It has been considered that TGF-β1plays a major role on hematopoietic stem cells (HSC) based on in vitro experiment. Achieving in vivo experiments proved to be difficult because constitutive TGF-β1 knock-out (KO) in mice leads to lethality during the first 4 weeks of life from a wasting syndrome related to tissue infiltration by activated T cells and macrophages. For this reason, hematopoiesis of TGF-β1−/− mice has not been studied in details. In contrast the role of TGF-β1 has been recently extensively studied in conditional TGF-β type I receptor (TβRI) KO mice. No clear effect was observed on HSC functions, suggesting that TGF-β1 was not a key physiological regulator of hematopoiesis in the adult. However, these experiments have some limitations. They do not exclude a putative role for TGF-β1 during fetal hematopoiesis and they do not specifically address the role of TGF-β1 on hematopoiesis because KO of TGF-β receptor leads to signaling arrest for all TGF-βs. In addition, other receptors may be involved in TGF-β1 signaling. For these reasons, we have investigated the hematopoiesis of constitutive TGF-β1 KO mice with a mixed Sv129 × CF-1 genetic background allowing the birth of a high proportion of homozygotes. In 2 week-old neonate mice, we have shown a decrease of bone marrow (BM) and spleen progenitors and a decrease of immature progenitors colony forming unit of the spleen (CFU-s). Moreover this was associated with a loss in reconstitutive activity of TGF-β1−/− HSC from BM. However, although asymptomatic, these mice had an excess of activated lymphocytes and an augmentation of Sca-1 antigen on hematopoietic cells suggesting an excess of γ-interferon release. Thus we studied hematopoiesis of 7 to 10 days-old neonate mice, before phenotypic modification and inflammatory cytokine release. Similar results were observed with a decrease in the number of progenitors and in the proliferation of TGF-β1−/− BM cells along with an increased differentiation but without an augmentation in apoptosis. Moreoever, a loss of long term reconstitutive capacity of BM Lineage negative (Lin−) TGF-β1−/− cells along with a diminution of homing of TGF-β1−/− progenitors was found. These results demonstrate that TGF-β1 may play a major role on the HSC/Progenitor compartment in vivo and that this defect does not seem to be linked to the immune disease. To completely overpass the risk of the inflammatory syndrome, we analyzed hematopoiesis of fetal liver (FL) of TGF-β1−/− mice and still found a decrease in progenitors, a profound defect in the proliferative capacities, in long term reconstitutive activity and homing potential of primitive FL hematopoietic cells. Our results demonstrate that TGF-β1 plays an important role during hematopoietic embryonic development. Altogether these findings suggest that TGF-β1 is a potent positive regulator for the in vivo homeostasis of the HSC compartment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fan Yang ◽  
Lingqing Xu ◽  
Lujie Liang ◽  
Wanfei Liang ◽  
Jiachen Li ◽  
...  

Type I and type II CRISPR-Cas systems are employed to evade host immunity by targeting interference of bacteria’s own genes. Although Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, possesses integrated type III-A CRISPR-Cas system, its role in mycobacteria remains obscure. Here, we observed that seven cas genes (csm2∼5, cas10, cas6) were upregulated in Mycobacterium bovis BCG under oxidative stress treatment, indicating the role of type III-A CRISPR-Cas system in oxidative stress. To explore the functional role of type III-A CRISPR-Cas system, TCC (Type III-A CRISPR-Cas system, including cas6, cas10, and csm2-6) mutant was generated. Deletion of TCC results in increased sensitivity in response to hydrogen peroxide and reduced cell envelope integrity. Analysis of RNA-seq dataset revealed that TCC impacted on the oxidation-reduction process and the composition of cell wall which is essential for mycobacterial envelop integrity. Moreover, disrupting TCC led to poor intracellular survival in vivo and in vitro. Finally, we showed for the first time that TCC contributed to the regulation of regulatory T cell population, supporting a role of TCC in modulating host immunity. Our finding reveals the important role of TCC in cell envelop homeostasis. Our work also highlights type III-A CRISPR-Cas system as an important factor for intracellular survival and host immunoregulation in mycobacteria, thus may be a potential target for therapy.


Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 22 ◽  
Author(s):  
Beatriz Escudero-Pérez ◽  
César Muñoz-Fontela

Filoviruses, such as Ebola and Marburg virus, encode viral proteins with the ability to counteract the type I interferon (IFN-I) response. These IFN-I antagonist proteins are crucial to ensure virus replication, prevent an antiviral state in infected and bystander cells, and impair the ability of antigen-presenting cells to initiate adaptive immune responses. However, in recent years, a number of studies have underscored the conflicting data between in vitro studies and in vivo data obtained in animal models and clinical studies during outbreaks. This review aims to summarize these data and to discuss the relative contributions of IFN-α and IFN-β to filovirus pathogenesis in animal models and humans. Finally, we evaluate the putative utilization of IFN-I in post-exposure therapy and its implications as a biomarker of vaccine efficacy.


2000 ◽  
Vol 113 (3) ◽  
pp. 483-491 ◽  
Author(s):  
F.A. Steinbock ◽  
B. Nikolic ◽  
P.A. Coulombe ◽  
E. Fuchs ◽  
P. Traub ◽  
...  

Plectin, the largest and most versatile member of the cytolinker/plakin family of proteins characterized to date, has a tripartite structure comprising a central 200 nm-long (α)-helical rod domain flanked by large globular domains. The C-terminal domain comprises a short tail region preceded by six highly conserved repeats (each 28–39 kDa), one of which (repeat 5) contains plectin's intermediate filament (IF)-binding site. We used recombinant and native proteins to assess the effects of plectin repeat 5-binding to IF proteins of different types. Quantitative Eu(3+)-based overlay assays showed that plectin's repeat 5 domain bound to type III IF proteins (vimentin) with preference over type I and II cytokeratins 5 and 14. The ability of both types of IF proteins to self-assemble into filaments in vitro was impaired by plectin's repeat 5 domain in a concentration-dependent manner, as revealed by negative staining and rotary shadowing electron microscopy. This effect was much more pronounced in the case of vimentin compared to cytokeratins 5/14. Preassembled filaments of both types became more and more crosslinked upon incubation with increasing concentrations of plectin repeat 5. However, at high proportions of plectin to IF proteins, disassembly of filaments occurred. Again, vimentin filaments proved considerably more sensitive towards disassembly than those composed of cytokeratins 5 and 14. In general, IFs formed from recombinant proteins were found to be slightly more responsive towards plectin influences than their native counterparts. A dose-dependent plectin-inflicted collapse and putative disruption of IFs was also observed in vivo after ectopic expression of vimentin and plectin's repeat 5 domain in cotransfected vimentin-deficient SW13 (vim(-)) cells. Our results suggest an involvement of plectin not only in crosslinking and stabilization of cytoskeletal IF networks, but also in regulation of their dynamics.


2004 ◽  
Vol 15 (2) ◽  
pp. 552-562 ◽  
Author(s):  
Veronique Blais ◽  
Hui Gao ◽  
Cherilyn A. Elwell ◽  
Michael N. Boddy ◽  
Pierre-Henri L. Gaillard ◽  
...  

Mus81 is a highly conserved endonuclease with homology to the XPF subunit of the XPF-ERCC1 complex. In yeast Mus81 associates with a second subunit, Eme1 or Mms4, which is essential for endonuclease activity in vitro and for in vivo function. Human Mus81 binds to a homolog of fission yeast Eme1 in vitro and in vivo. We show that recombinant Mus81-Eme1 cleaves replication forks, 3′ flap substrates, and Holliday junctions in vitro. By use of differentially tagged versions of Mus81 and Eme1, we find that Mus81 associates with Mus81 and that Eme1 associates with Eme1. Thus, complexes containing two or more Mus81-Eme1 units could function to coordinate substrate cleavage in vivo. Down-regulation of Mus81 by RNA interference reduces mitotic recombination in human somatic cells. The recombination defect is rescued by expression of a bacterial Holliday junction resolvase. These data provide direct evidence for a role of Mus81-Eme1 in mitotic recombination in higher eukaryotes and support the hypothesis that Mus81-Eme1 resolves Holliday junctions in vivo.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A270-A270
Author(s):  
Yuhao Shi ◽  
Melissa Dolan ◽  
Michalis Mastri ◽  
Kevin Eng ◽  
John Ebos

BackgroundTherapeutic targeting of programmed cell death protein ligand 1 (PD-L1) has led to durable benefits for many cancer patients; however, the development of acquired resistance is common. Dysregulated type II interferon (IFN) signaling on tumor cells can contribute to resistance via altered expression of IFN stimulated genes (ISGs), which include cytokines and growth factors capable of immune-suppression and tumor promotion. However, the role of type I IFNs, including IFNα and IFNβ, in acquired resistance remain understudied. Here we examined the impact of chronic PD-L1 blockade to evaluate the role of IFN-related secretory changes in preclinical models of resistance.MethodsUsing a mouse breast EMT6 orthotopic tumor model, we selected PD-L1 drug resistant (PDR) cells from tumors initially responsive to PD-L1 blockade, but that later relapsed. Using transcriptomic and proteomic approaches, we evaluated secreted proteins associated with IFN signaling. To test for direct connections between PD-L1 and IFN signaling in secretory profile modulation, genetic and therapeutic disruption of PD-L1/IFNAR1 were conducted in vitro.ResultsWe identified a unique gene signature for secreted proteins following acquired resistance to PD-L1 blockade that associated with IFN signaling. This secretory signature was validated using publicly available datasets derived from preclinical tumors and clinical biopsies after anti-PD-L1 treatment failure. Interestingly, genetic and antibody inhibition of PD-L1 in vitro enhanced PDR secretory signatures following IFNβ stimulation suggesting PD-L1 tumor-intrinsic functions may regulate IFN responses following acquired resistance. To test whether secretory profiles impact tumor growth, inhibition of specific ISGs (IL-6) or ISG regulators (IFNAR1) were examined and found to inhibit PDR tumors in vivo, compared to parental controls.ConclusionsTogether, these findings identify a secretory profile associated with acquired resistance to PD-L1 blockade that may be modulated, at least in part, by IFNβ. Selective targeting of secreted ISGs may provide a benefit for patients after anti-PD-L1 treatment failure.


Sign in / Sign up

Export Citation Format

Share Document