scholarly journals The Involvement of Mycobacterium Type III-A CRISPR-Cas System in Oxidative Stress

2021 ◽  
Vol 12 ◽  
Author(s):  
Fan Yang ◽  
Lingqing Xu ◽  
Lujie Liang ◽  
Wanfei Liang ◽  
Jiachen Li ◽  
...  

Type I and type II CRISPR-Cas systems are employed to evade host immunity by targeting interference of bacteria’s own genes. Although Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, possesses integrated type III-A CRISPR-Cas system, its role in mycobacteria remains obscure. Here, we observed that seven cas genes (csm2∼5, cas10, cas6) were upregulated in Mycobacterium bovis BCG under oxidative stress treatment, indicating the role of type III-A CRISPR-Cas system in oxidative stress. To explore the functional role of type III-A CRISPR-Cas system, TCC (Type III-A CRISPR-Cas system, including cas6, cas10, and csm2-6) mutant was generated. Deletion of TCC results in increased sensitivity in response to hydrogen peroxide and reduced cell envelope integrity. Analysis of RNA-seq dataset revealed that TCC impacted on the oxidation-reduction process and the composition of cell wall which is essential for mycobacterial envelop integrity. Moreover, disrupting TCC led to poor intracellular survival in vivo and in vitro. Finally, we showed for the first time that TCC contributed to the regulation of regulatory T cell population, supporting a role of TCC in modulating host immunity. Our finding reveals the important role of TCC in cell envelop homeostasis. Our work also highlights type III-A CRISPR-Cas system as an important factor for intracellular survival and host immunoregulation in mycobacteria, thus may be a potential target for therapy.

2017 ◽  
Vol 312 (3) ◽  
pp. G219-G227 ◽  
Author(s):  
Leonie Beljaars ◽  
Sara Daliri ◽  
Christa Dijkhuizen ◽  
Klaas Poelstra ◽  
Reinoud Gosens

WNT-5A is a secreted growth factor that belongs to the noncanonical members of the Wingless-related MMTV-integration family. Previous studies pointed to a connection between WNT-5A and the fibrogenic factor TGF-β warranting further studies into the functional role of WNT-5A in liver fibrosis. Therefore, we studied WNT-5A expressions in mouse and human fibrotic livers and examined the relation between WNT-5A and various fibrosis-associated growth factors, cytokines, and extracellular matrix proteins. WNT-5A gene and protein expressions were significantly increased in fibrotic mouse and human livers compared with healthy livers. Regression or therapeutic intervention in mice resulted in decreased hepatic WNT-5A levels paralleled by lower collagen levels. Immunohistochemical analysis showed WNT-5A staining in fibrotic septa colocalizing with desmin staining indicating WNT-5A expression in myofibroblasts. In vitro studies confirmed WNT-5A expression in this cell type and showed that TGF-β significantly enhanced WNT-5A expression in contrast to PDGF-BB and proinflammatory cytokines IL-1β and TNF-α. Additionally, TGF-β induces the expression of the WNT receptors FZD2 and FZD8. After silencing of WNT-5A, reduced levels of collagen type I, vimentin, and fibronectin in TGF-β-stimulated myofibroblasts were measured compared with nonsilencing siRNA-treated controls. Interestingly, the antifibrotic cytokine IFNγ suppressed WNT-5A in vitro and in vivo. IFNγ-treated fibrotic mice showed significantly less WNT-5A expression compared with untreated fibrotic mice. In conclusion, WNT-5A paralleled collagen I levels in fibrotic mouse and human livers. WNT-5A expression in myofibroblasts is induced by the profibrotic factor TGF-β and plays an important role in TGF-β-induced regulation of fibrotic matrix proteins, whereas its expression can be reversed upon treatment, both in vitro and in vivo. NEW & NOTEWORTHY This study describes the localization and functional role of WNT-5A in human and mouse fibrotic livers. Hepatic WNT-5A expression parallels collagen type I expression. In vivo and in vitro, the myofibroblasts were identified as the key hepatic cells producing WNT-5A. WNT-5A is under control of TGF-β and its activities are primarily profibrotic.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Maria Pujantell ◽  
Roger Badia ◽  
Iván Galván-Femenía ◽  
Edurne Garcia-Vidal ◽  
Rafael de Cid ◽  
...  

AbstractInfection by human papillomavirus (HPV) alters the microenvironment of keratinocytes as a mechanism to evade the immune system. A-to-I editing by ADAR1 has been reported to regulate innate immunity in response to viral infections. Here, we evaluated the role of ADAR1 in HPV infection in vitro and in vivo. Innate immune activation was characterized in human keratinocyte cell lines constitutively infected or not with HPV. ADAR1 knockdown induced an innate immune response through enhanced expression of RIG-I-like receptors (RLR) signaling cascade, over-production of type-I IFNs and pro-inflammatory cytokines. ADAR1 knockdown enhanced expression of HPV proteins, a process dependent on innate immune function as no A-to-I editing could be identified in HPV transcripts. A genetic association study was performed in a cohort of HPV/HIV infected individuals followed for a median of 6 years (range 0.1–24). We identified the low frequency haplotype AACCAT significantly associated with recurrent HPV dysplasia, suggesting a role of ADAR1 in the outcome of HPV infection in HIV+ individuals. In summary, our results suggest that ADAR1-mediated innate immune activation may influence HPV disease outcome, therefore indicating that modification of innate immune effectors regulated by ADAR1 could be a therapeutic strategy against HPV infection.


2022 ◽  
Author(s):  
Zhao Huang ◽  
Li Zhou ◽  
Jiufei Duan ◽  
Siyuan Qin ◽  
Yu Wang ◽  
...  

Abstract Loss of E-cadherin (ECAD), often caused by epigenetic inactivation, is closely associated with tumor metastasis. However, how ECAD is regulated in response to oxidative stress during tumorigenesis is largely unknown. Here we identify RNF25 as a new E3 ligase of ECAD, whose activation by oxidative stress leads to ECAD protein degradation in hepatocellular carcinoma (HCC). Loss of ECAD activates YAP, which in turn promotes the transcription of RNF25, thus forming a positive feedback loop to sustain the ECAD downregulation. YAP activation mitigates oxidative stress in detached HCC cells by upregulating antioxidant genes, protecting detached HCC cells from ferroptosis, resulting in anoikis resistance. Mechanistically, we found that protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344, which increases its kinase activity towards RNF25 phosphorylation at Ser450, facilitating RNF25-mediated degradation of ECAD. Moreover, RNF25 expression is associated with HCC metastasis and depletion of RNF25 is sufficient to diminish HCC invasion and metastasis in vitro and in vivo. Together, these results identify a dual role of RNF25 as a critical regulator of ECAD protein turnover, promoting both anoikis resistance and metastasis, and PKA is a necessary redox sensor to enable this process. Our study provides mechanistic insight into how tumor cells sense oxidative stress signals to spread while escaping cell death.


2008 ◽  
Vol 205 (8) ◽  
pp. 1929-1938 ◽  
Author(s):  
César Muñoz-Fontela ◽  
Salvador Macip ◽  
Luis Martínez-Sobrido ◽  
Lauren Brown ◽  
Joseph Ashour ◽  
...  

Tumor suppressor p53 is activated by several stimuli, including DNA damage and oncogenic stress. Previous studies (Takaoka, A., S. Hayakawa, H. Yanai, D. Stoiber, H. Negishi, H. Kikuchi, S. Sasaki, K. Imai, T. Shibue, K. Honda, and T. Taniguchi. 2003. Nature. 424:516–523) have shown that p53 is also induced in response to viral infections as a downstream transcriptional target of type I interferon (IFN) signaling. Moreover, many viruses, including SV40, human papillomavirus, Kaposi's sarcoma herpesvirus, adenoviruses, and even RNA viruses such as polioviruses, have evolved mechanisms designated to abrogate p53 responses. We describe a novel p53 function in the activation of the IFN pathway. We observed that infected mouse and human cells with functional p53 exhibited markedly decreased viral replication early after infection. This early inhibition of viral replication was mediated both in vitro and in vivo by a p53-dependent enhancement of IFN signaling, specifically the induction of genes containing IFN-stimulated response elements. Of note, p53 also contributed to an increase in IFN release from infected cells. We established that this p53-dependent enhancement of IFN signaling is dependent to a great extent on the ability of p53 to activate the transcription of IFN regulatory factor 9, a central component of the IFN-stimulated gene factor 3 complex. Our results demonstrate that p53 contributes to innate immunity by enhancing IFN-dependent antiviral activity independent of its functions as a proapoptotic and tumor suppressor gene.


2018 ◽  
Vol 115 (20) ◽  
pp. 5253-5258 ◽  
Author(s):  
Hideyuki Yanai ◽  
Shiho Chiba ◽  
Sho Hangai ◽  
Kohei Kometani ◽  
Asuka Inoue ◽  
...  

IFN regulatory factor 3 (IRF3) is a transcription regulator of cellular responses in many cell types that is known to be essential for innate immunity. To confirm IRF3’s broad role in immunity and to more fully discern its role in various cellular subsets, we engineered Irf3-floxed mice to allow for the cell type-specific ablation of Irf3. Analysis of these mice confirmed the general requirement of IRF3 for the evocation of type I IFN responses in vitro and in vivo. Furthermore, immune cell ontogeny and frequencies of immune cell types were unaffected when Irf3 was selectively inactivated in either T cells or B cells in the mice. Interestingly, in a model of lipopolysaccharide-induced septic shock, selective Irf3 deficiency in myeloid cells led to reduced levels of type I IFN in the sera and increased survival of these mice, indicating the myeloid-specific, pathogenic role of the Toll-like receptor 4–IRF3 type I IFN axis in this model of sepsis. Thus, Irf3-floxed mice can serve as useful tool for further exploring the cell type-specific functions of this transcription factor.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Yuyi Huang ◽  
Yujie Wang ◽  
Shuhui Meng ◽  
Zhuohang Chen ◽  
Haifan Kong ◽  
...  

Recent studies have indicated that the Zika virus (ZIKV) has a significant impact on the fetal brain, and autophagy is contributing to host immune response and defense against virus infection. Here, we demonstrate that ZIKV infection triggered increased LC3 punctuation in mouse monocyte-macrophage cell line (RAW264.7), mouse microglial cell line (BV2), and hindbrain tissues, proving the occurrence of autophagy both in vitro and in vivo. Interestingly, manual intervention of autophagy, like deficiency inhibited by 3-MA, can reduce viral clearance in RAW264.7 cells upon ZIKV infection. Besides, specific siRNA strategy confirmed that autophagy can be activated through Atg7-Atg5 and type I IFN signaling pathway upon ZIKV infection, while knocking down of Atg7 and Atg5 effectively decreased the ZIKV clearance in phagocytes. Furthermore, we analyzed that type I IFN signaling could contribute to autophagic clearance of invaded ZIKV in phagocytes. Taken together, our findings demonstrate that ZIKV-induced autophagy is favorable to activate host immunity, particularly through type I IFN signaling, which participates in host protection and defense against ZIKV infection.


Biomolecules ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1523
Author(s):  
Isabelle Anna Zink ◽  
Erika Wimmer ◽  
Christa Schleper

Prokaryotes are constantly coping with attacks by viruses in their natural environments and therefore have evolved an impressive array of defense systems. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is an adaptive immune system found in the majority of archaea and about half of bacteria which stores pieces of infecting viral DNA as spacers in genomic CRISPR arrays to reuse them for specific virus destruction upon a second wave of infection. In detail, small CRISPR RNAs (crRNAs) are transcribed from CRISPR arrays and incorporated into type-specific CRISPR effector complexes which further degrade foreign nucleic acids complementary to the crRNA. This review gives an overview of CRISPR immunity to newcomers in the field and an update on CRISPR literature in archaea by comparing the functional mechanisms and abundances of the diverse CRISPR types. A bigger fraction is dedicated to the versatile and prevalent CRISPR type III systems, as tremendous progress has been made recently using archaeal models in discerning the controlled molecular mechanisms of their unique tripartite mode of action including RNA interference, DNA interference and the unique cyclic-oligoadenylate signaling that induces promiscuous RNA shredding by CARF-domain ribonucleases. The second half of the review spotlights CRISPR in archaea outlining seminal in vivo and in vitro studies in model organisms of the euryarchaeal and crenarchaeal phyla, including the application of CRISPR-Cas for genome editing and gene silencing. In the last section, a special focus is laid on members of the crenarchaeal hyperthermophilic order Sulfolobales by presenting a thorough comparative analysis about the distribution and abundance of CRISPR-Cas systems, including arrays and spacers as well as CRISPR-accessory proteins in all 53 genomes available to date. Interestingly, we find that CRISPR type III and the DNA-degrading CRISPR type I complexes co-exist in more than two thirds of these genomes. Furthermore, we identified ring nuclease candidates in all but two genomes and found that they generally co-exist with the above-mentioned CARF domain ribonucleases Csx1/Csm6. These observations, together with published literature allowed us to draft a working model of how CRISPR-Cas systems and accessory proteins cross talk to establish native CRISPR anti-virus immunity in a Sulfolobales cell.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Jing-Shang Wang ◽  
Ye Huang ◽  
Shuping Zhang ◽  
Hui-Jun Yin ◽  
Lei Zhang ◽  
...  

Hyperglycemia fluctuation is associated with diabetes mellitus (DM) complications when compared to persistent hyperglycemia. Previous studies have shown that paeoniflorin (PF), through its antiapoptosis, anti-inflammation, and antithrombotic properties, effectively protects against cardiovascular and cerebrovascular disease. However, the mechanism underlying the protection from PF against vascular injuries induced by hyperglycemia fluctuations remains poorly understood. Herein, we investigated the potential protective role of PF on human umbilical vein endothelial cells (HUVECs) subjected to intermittent glucose levels in vitro and in DM rats with fluctuating hyperglycemia in vivo. A remarkable increased apoptosis associated with elevated inflammation, increased oxidative stress, and high protein level of PKCβ1 was induced in HUVECs by intermittently changing glucose for 8 days, and PF recovered those detrimental changes. LY333531, a potent PKCβ1 inhibitor, and metformin manifested similar effects. Additionally, in DM rats with fluctuating hyperglycemia, PF protected against vascular damage as what has been observed in vitro. Taken together, PF attenuates the vascular injury induced by fluctuant hyperglycemia through oxidative stress inhibition, inflammatory reaction reduction, and PKCβ1 protein level repression, suggesting its perspective clinical usage.


2020 ◽  
Vol 2020 ◽  
pp. 1-14 ◽  
Author(s):  
Iwona Zwolak

Vanadium (V) in its inorganic forms is a toxic metal and a potent environmental and occupational pollutant and has been reported to induce toxic effects in animals and people. In vivo and in vitro data show that high levels of reactive oxygen species are often implicated in vanadium deleterious effects. Since many dietary (exogenous) antioxidants are known to upregulate the intrinsic antioxidant system and ameliorate oxidative stress-related disorders, this review evaluates their effectiveness in the treatment of vanadium-induced toxicity. Collected data, mostly from animal studies, suggest that dietary antioxidants including ascorbic acid, vitamin E, polyphenols, phytosterols, and extracts from medicinal plants can bring a beneficial effect in vanadium toxicity. These findings show potential preventive effects of dietary antioxidants on vanadium-induced oxidative stress, DNA damage, neurotoxicity, testicular toxicity, and kidney damage. The relevant mechanistic insights of these events are discussed. In summary, the results of studies on the role of dietary antioxidants in vanadium toxicology appear encouraging enough to merit further investigations.


1981 ◽  
Vol 193 (2) ◽  
pp. 541-552 ◽  
Author(s):  
L C Packman ◽  
W V Shaw

1. Hybrids of the tetrameric enzyme chloramphenicol acetyltransferase (EC 2.3.1.28) were formed in vivo in a strain of Escherichia coli which harbours two different plasmids, each of which normally confers chloramphenicol resistance and specifies an easily distinguished enzyme variant (type I or type III) which is composed of identical subunits. Cell-free extracts of the dual-plasmid strain were found to contain five species of active enzyme, two of which were the homomeric enzymes corresponding to the naturally occurring tetramers of the type-I (beta 4) and type-III (alpha 4) enzymes. The other three variants were judged to be the heteromeric hybrid variants (alpha 3 beta, alpha 2 beta 2, alpha beta 3). 2. The alpha 3 beta and alpha 2 beta 2 hybrids of chloramphenicol acetyltransferase were purified to homogeneity by combining the techniques of affinity and ion-exchange chromatography. The alpha beta 3 variant was not recovered and may be unstable in vitro. 3. The unique lysine residues that could not be modified with methyl acetimidate in each of the native homomeric enzymes were also investigated in the heteromeric tetramers. 4. Lysine-136 remains buried in each beta subunit of the parental (type I) enzyme and in each of the hybrid tetramers. Lysine-38 of each alpha subunit is similarly unreactive in the native type-III chloramphenicol acetyltransferase (alpha 4), but in the alpha 2 beta 2 hybird lysine-38 of each alpha subunit is fully exposed to solvent. Another lysine residue, fully reactive in the alpha 4 enzyme, was observed to be inaccessible to modification in the symmetrical hybrid. The results obtained for the alpha 3 beta enzyme suggest that lysine-38 in two subunits and a different lysine group (that identified in the alpha 2 beta 2 enzyme) in the third alpha subunit are buried. 5. A tentative model for the subunit interactions of chloramphenicol acetyltransferase is proposed on the basis of the results described.


Sign in / Sign up

Export Citation Format

Share Document