scholarly journals How head shape and substrate particle size affect fossorial locomotion in lizards

Author(s):  
Philip J. Bergmann ◽  
David S. Berry

Granular substrates ranging from silt to gravel cover much of the Earth's land area, providing an important habitat for fossorial animals. Many of these animals use their heads to penetrate the substrate. Although there is considerable variation in head shape, how head shape affects fossorial locomotor performance in different granular substrates is poorly understood. Here, head shape variation for 152 species of fossorial lizards was quantified for head diameter, slope and pointiness of the snout. The force needed to penetrate different substrates was measured using 28 physical models spanning this evolved variation was constructed. Ten substrates were considered, ranging in particle size from 0.025 to 4mm in diameter and consisting of spherical or angular particles. Head shape evolved in a weakly correlated manner, with snouts that were gently sloped being blunter. There were also significant clade differences in head shape among fossorial lizards. Experiments with physical models showed that as head diameter increased, absolute penetration force increased but force normalized by cross-sectional area decreased. Penetration force decreased for snouts that tapered more gradually and were pointier. Larger and angular particles required higher penetration forces, although intermediate size spherical particles, consistent with coarse sand, required the lowest force. Particle size and head diameter effect were largest, indicating that fossorial burrowers should evolve narrow heads and bodies, and select relatively fine particles. However, variation in evolved head shapes and recorded penetration forces suggest that kinematics of fossorial movement are likely an important factor in explaining evolved diversity.

2016 ◽  
Vol 12 (3) ◽  
pp. 4307-4321 ◽  
Author(s):  
Ahmed Hassan Ibrahim ◽  
Yehia Abbas

The physical properties of ferrites are verysensitive to microstructure, which in turn critically dependson the manufacturing process.Nanocrystalline Lithium Stannoferrite system Li0.5+0.5XFe2.5-1.5XSnXO4,X= (0, 0.2, 0.4, 0.6, 0.8 and 1.0) fine particles were successfully prepared by double sintering ceramic technique at pre-sintering temperature of 500oC for 3 h andthepre-sintered material was crushed and sintered finally in air at 1000oC.The structural and microstructural evolutions of the nanophase have been studied using X-ray powder diffraction (XRD) and the Rietveld method.The refinement results showed that the nanocrystalline ferrite has a two phases of ordered and disordered phases for polymorphous lithium Stannoferrite.The particle size of as obtained samples were found to be ~20 nm through TEM that increases up to ~ 85 nmand isdependent on the annealing temperature. TEM micrograph reveals that the grains of sample are spherical in shape. (TEM) analysis confirmed the X-ray results.The particle size of stannic substituted lithium ferrite fine particle obtained from the XRD using Scherrer equation.Magneticmeasurements obtained from lake shore’s vibrating sample magnetometer (VSM), saturation magnetization ofordered LiFe5O8 was found to be (57.829 emu/g) which was lower than disordered LiFe5O8(62.848 emu/g).Theinterplay between superexchange interactions of Fe3+ ions at A and B sublattices gives rise to ferrimagnetic ordering of magnetic moments,with a high Curie-Weiss temperature (TCW ~ 900 K).


2020 ◽  
Vol 14 (3) ◽  
pp. 210-224
Author(s):  
Gayatri Patel ◽  
Bindu K.N. Yadav

Background: The purpose of this study was to formulate, characterize and in-vitro cytotoxicity of 5-Fluorouracil loaded controlled release nanoparticles for the treatment of skin cancer. The patents on nanoparticles (US8414926B1), (US61654404A), (WO2007150075A3) etc. helped in the selection polymers and method for the preparation of nanoparticles. Methods: In the present study nanoparticles were prepared by simple ionic gelation method using various concentrations of chitosan and sodium tripolyphosphate (TPP). Several process and formulation parameters were screened and optimized using 25-2 fractional factorial design. The prepared nanoparticles were evaluated for particle size, shape, charge, entrapment efficiency, crosslinking mechanism and drug release study. Results: The optimized 5-Fluorouracil loaded nanoparticle were found with particle size of of 320±2.1 nm, entrapment efficiency of 85.12%± 1.1% and Zeta potential of 29mv±1mv. Scanning electron microscopy and dynamic light scattering technique revealed spherical particles with uniform size. The invitro release profile showed controlled release up to 24 hr. Further study was carried using A375 basal cell carcinoma cell-line to elucidate the mechanism of its cytotoxicity by MTT assay. Conclusion: These results demonstrate that the possibility of delivering 5-Fluorouracil to skin with enhanced encapsulation efficiency indicating effectiveness of the formulation for treatment of basal cell carcinoma type of skin cancer.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 278 ◽  
Author(s):  
Niloofar Ordou ◽  
Igor E. Agranovski

Particle size distribution in biomass smoke was observed for different burning phases, including flaming and smouldering, during the combustion of nine common Australian vegetation representatives. Smoke particles generated during the smouldering phase of combustions were found to be coarser as compared to flaming aerosols for all hard species. In contrast, for leafy species, this trend was inversed. In addition, the combustion process was investigated over the entire duration of burning by acquiring data with one second time resolution for all nine species. Particles were separately characterised in two categories: fine particles with dominating diffusion properties measurable with diffusion-based instruments (Dp < 200 nm), and coarse particles with dominating inertia (Dp > 200 nm). It was found that fine particles contribute to more than 90 percent of the total fresh smoke particles for all investigated species.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


Author(s):  
Adam C. Gladen ◽  
Susan C. Mantell ◽  
Jane H. Davidson

A thermotropic material is modeled as an absorbing, thin slab containing anisotropic scattering, monodisperse, spherical particles. Monte Carlo ray tracing is used to solve the governing equation of radiative transfer. Predicted results are validated by comparison to the measured normal-hemispherical reflectance and transmittance of samples with various volume fraction and relative index of refraction. A parametric study elucidates the effects of particle size parameter, scattering albedo, and optical thickness on the normal-hemispherical transmittance, reflectance, and absorptance. The results are interpreted for a thermotropic material used for overheat protection of a polymer solar absorber. For the preferred particle size parameter of 2, the optical thickness should be less than 0.3 to ensure high transmittance in the clear state. To significantly reduce the transmittance and increase the reflectance in the translucent state, the optical thickness should be greater than 2.5 and the scattering albedo should be greater than 0.995. For optical thickness greater than 5, the reflectance is asymptotic and any further reduction in transmittance is through increased absorptance. A case study is used to illustrate how the parametric study can be used to guide the design of thermotropic materials. Low molecular weighted polyethylene in poly(methyl methacrylate) is identified as a potential thermotropic material. For this material and a particle radius of 200 nm, it is determined that the volume fraction and thickness should equal 10% and 1 mm, respectively.


Author(s):  
Rahul Kumar ◽  
Sanjay Kumar ◽  
Pranava Chaudhari ◽  
Amit K. Thakur

Abstract Flufenamic acid (FFA) is a Biopharmaceutical Classification System- II (BCS-II) class drug with poor bioavailability and a lower dissolution rate. Particle size reduction is one of the conventional approaches to increase the dissolution rate and subsequently the bioavailability. The use of the liquid antisolvent method for particle size reduction of FFA was studied in this work. Ethanol and water were used as solvent and antisolvent, respectively. Experimental parameters such as solution concentration (10–40 mg/ml), flow rate (120–480 ml/h), temperature (298–328 K) and stirring speed (200–800 rpm) were investigated. Furthermore, the solid dispersion of FFA was prepared with polyvinylpyrrolidone K-30 (PVP K-30) with different weight ratios (1:1, 1:2, 1:3 and 1:4) and samples were characterized using SEM, FTIR and XRD techniques. The experimental investigation revealed that higher values of concentration, injection rate, stirring speed, along with lower temperature favored the formation of fine particles. SEM analysis revealed that the morphology of raw FFA changed from rock-like to rectangular-like after liquid antisolvent recrystallization. FTIR analysis validated the presence of hydrogen bonding between FFA and PVP in solid dispersion. XRD analysis showed no significant change in the crystallinity of the processed FFA.


1980 ◽  
Vol 48 (5) ◽  
pp. 896-902 ◽  
Author(s):  
A. C. Jackson ◽  
D. E. Olson

Total cross-sectional areas were computed from direct measurements made on two human central airway casts. Acoustic pulse-response measurements were obtained on rigid-walled positive replicas of these casts. From the acoustic response data of each cast, we computed the area-distance function of the acoustically equivalent structure (i.e., the structure with regular branching and negligible viscous losses, but with similar acoustic properties). The acoustic data predicted equivalent areas that compared favorably to the total cross-sectional areas in the casts at all points from the beginning of the trachea to distances about 6 cm beyond the carina corresponding to airways of the third, fourth, or fifth generation. These results indicate that, at least in the central airways, branching asymmetry and internal energy losses introduced negligible errors in estimates of cross-sectional areas derived from acoustic pulse-response measurements. This rapid noninvasive technique thus shows promise as a method of detecting upper and central airway obstruction.


Author(s):  
Elena Bezuglaya ◽  
Nikolay Lyapunov ◽  
Vladimir Bovtenko ◽  
Igor Zinchenko ◽  
Yurij Stolper

Aim. The purpose was to provide the rationale of test in regard to uniformity of fine particles dose for pressurised metered dose inhalers (pMDIs). Materials and methods. The pMDIs containing suspensions of salbutamol sulfate (SS) or solutions of beclometasone dipropionate (BD) were studied by laser diffraction and high performance liquid chromatography (HPLC). The particle size distribution of SS, the average dose mass and uniformity of dose mass, the average delivered dose and the uniformity of delivered dose, the average fine particles dose and uniformity of fine particles dose were determined. Apparatus A was used for assessment of fine particles dose. Results. The two analytical procedures for the quantitative determination of SS and BD by HPLC were validated in the ranges with low concentrations of these substances. The 5 medicinal products in pMDI dosage form were studied: 3 preparations were with SS and 2 ones contained BD. It was shown that three products with SS were very similar in regard to particle size distribution in containers and the average values of delivered dose were almost the same, but these products were different in the average dose mass and fine particle dose. According to the research results, the expediency of determining the average dose mass and the tests concerning uniformity of dosing of preparations by dose mass and by fine particle dose was substantiated. It was shown that in the case of pMDI the dosing of solutions of BD was more uniform compared to suspensions of SS. The approaches of leading and other pharmacopoeias concerning uniformity of dosing for pMDIs were critically discussed. The expediency of determination of uniformity of fine particle dose at the stage of pharmaceutical development was substantiated, as the therapeutic effect depends on fine particle dose. Issues concerning standardization pMDIs in regard to uniformity of fine particle dose were discussed. Conclusions. The expediency of standardization and quality control of pMDIs in regard to such attributes as the average dose mass, which characterizes the volume of the metering chamber of the valve as well as the uniformity of the dose mass and the uniformity of fine particle dose, which assure the therapeutic effect of each dose of the product was substantiated


Sign in / Sign up

Export Citation Format

Share Document