scholarly journals Recent advances in the understanding and management of Klebsiella pneumoniae

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1760 ◽  
Author(s):  
David P. Calfee

Klebsiella pneumoniae, a gram-negative bacillus of the Enterobacteriaceae family, is a component of the normal human microbiota and a common cause of community- and healthcare-associated infections. The increasing prevalence of antimicrobial resistance among K. pneumoniae isolates, particularly among those causing healthcare-associated infections, is an important public health concern. Infections caused by these multidrug-resistant organisms, for which safe and effective antimicrobial therapy options are extremely limited, are associated with poor outcomes for patients. The optimal approach to the treatment of infections caused by these multidrug-resistant strains remains undefined, and treatment decisions for an individual patient should be based on a number of organism- (for example, minimum inhibitory concentration) and patient-specific (for example, site of infection) factors. The emergence of pandrug-resistant strains of K. pneumoniae highlights the critical need for consistent implementation of effective strategies for prevention of transmission and infection and for the development of new antimicrobials with activity against these emerging pathogens.

2019 ◽  
Vol 40 (8) ◽  
pp. 904-909 ◽  
Author(s):  
Isabelle Vock ◽  
Sarah Tschudin-Sutter

AbstractIn the past several decades, the incidence of Klebsiella pneumoniae harboring resistance mechanisms against multiple antibiotic agents has increased on a global scale. We discuss reasons for ongoing transmission of multidrug-resistant K. pneumoniae in healthcare settings, which has resulted in the successful spread and establishment of this pathogen. It is now one of the most important causes of healthcare-associated infections worldwide.


2020 ◽  
Vol 16 ◽  
pp. 117693432093626
Author(s):  
Iván Darío Ocampo-Ibáñez ◽  
Yamil Liscano ◽  
Sandra Patricia Rivera-Sánchez ◽  
José Oñate-Garzón ◽  
Ashley Dayan Lugo-Guevara ◽  
...  

Infections caused by multidrug-resistant (MDR) Pseudomonas aeruginosa and Klebsiella pneumoniae are a serious worldwide public health concern due to the ineffectiveness of empirical antibiotic therapy. Therefore, research and the development of new antibiotic alternatives are urgently needed to control these bacteria. The use of cationic antimicrobial peptides (CAMPs) is a promising candidate alternative therapeutic strategy to antibiotics because they exhibit antibacterial activity against both antibiotic susceptible and MDR strains. In this study, we aimed to investigate the in vitro antibacterial effect of a short synthetic CAMP derived from the ΔM2 analog of Cec D-like (CAMP-CecD) against clinical isolates of K pneumoniae (n = 30) and P aeruginosa (n = 30), as well as its hemolytic activity. Minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) of CAMP-CecD against wild-type and MDR strains were determined by the broth microdilution test. In addition, an in silico molecular dynamic simulation was performed to predict the interaction between CAMP-CecD and membrane models of K pneumoniae and P aeruginosa. The results revealed a bactericidal effect of CAMP-CecD against both wild-type and resistant strains, but MDR P aeruginosa showed higher susceptibility to this peptide with MIC values between 32 and >256 μg/mL. CAMP-CecD showed higher stability in the P aeruginosa membrane model compared with the K pneumoniae model due to the greater number of noncovalent interactions with phospholipid 1-Palmitoyl-2-oleyl-sn-glycero-3-(phospho-rac-(1-glycerol)) (POPG). This may be related to the boosted effectiveness of the peptide against P aeruginosa clinical isolates. Given the antibacterial activity of CAMP-CecD against wild-type and MDR clinical isolates of P aeruginosa and K pneumoniae and its nonhemolytic effects on human erythrocytes, CAMP-CecD may be a promising alternative to conventional antibiotics.


Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 302
Author(s):  
Giuseppe Migliara ◽  
Valentina Baccolini ◽  
Claudia Isonne ◽  
Sara Cianfanelli ◽  
Carolina Di Paolo ◽  
...  

Epidemiological research has demonstrated direct relationships between antibiotic consumption and the emergence of multidrug-resistant (MDR) bacteria. In this nested case–control study, we assessed whether prior exposure to antibiotic therapy and its duration affect the onset of healthcare-associated infections (HAIs) sustained by MDR Klebsiella pneumoniae (MDR-Kp) in intensive care unit patients. Cases were defined as patients who developed an MDR-Kp HAI. Controls matched on sex and the length of intensive care unit (ICU) stay were randomly selected from the at-risk population. Any antibiotic agent received in systemic administration before the onset of infection was considered as antibiotic exposure. Multivariable conditional logistic regression analyses were performed to estimate the effect of prior exposure to each antibiotic class (Model 1) or its duration (Model 2) on the onset of HAIs sustained by MDR-Kp. Overall, 87 cases and 261 gender-matched controls were compared. In Model 1, aminoglycosides and linezolid independently increased the likelihood of developing an MDR-Kp HAI, whereas exposure to both linezolid and penicillins reduced the effect of linezolid alone. In Model 2, cumulative exposure to aminoglycosides increased the likelihood of the outcome, as well as cumulative exposures to penicillins and colistin, while a previous exposure to both penicillins and colistin reduced the influence of the two antibiotic classes alone. Our study confirms that aminoglycosides, penicillins, linezolid, and colistin may play a role in favoring the infections sustained by MDR-Kp. However, several double exposures in the time window before HAI onset seemed to hinder the selective pressure exerted by individual agents.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
M Barchitta ◽  
A Maugeri ◽  
C La Mastra ◽  
MC La Rosa ◽  
L Sessa ◽  
...  

Abstract Klebsiella pneumoniae - and especially multidrug-resistant K. pneumoniae - represents a global threat for Public Health, due to its high dissemination in Intensive Care Units (ICUs) and its association with mortality. Here, we investigated the molecular epidemiology of multidrug-resistant K. pneumoniae strains in ICUs from Catania, Italy. We used data and samples from the Italian Nosocomial Infections Surveillance in ICUs - SPIN-UTI project, which has been surveying the epidemiology and the risk of Healthcare-associated infections (HAIs) in Italian ICUs. The SPIN-UTI network adopted the ECDC protocols for patient-based HAI surveillance. In a sample of ICUs the patient-based surveillance was integrated with a laboratory-based surveillance of MDR K. pneumoniae isolates. K. pneumoniae isolates were genotyped by multilocus sequence typing (MLST), and patterns of K. pneumoniae acquisition (i.e. carriage, colonization and infection) were identified using standard definitions. Our analysis included 155 patients who stayed in two ICUs for a total of 2254 days, from October 2016 to March 2017. Trauma patients were more likely to be infected with K. pneumoniae than other patients (OR = 5.9; 95%CI=2.4-14.8; p = 0.004). A total of 109 K. pneumoniae strains were isolated from different sites of 39 patients, which in turn were defined as 45.2% colonization, 25.8% infection, and 29% carriage. 79.3% K. pneumoniae isolates resistant to carbapenems and 100% resistant to penicillins and cephalosporins. The MLST identified two major clonal groups: the ST395 and the ST37, which represented respectively the 65.6% and the 21.3% of typed isolates. Surveillance of colonization and infection by high-risk clones might help in implementing appropriate strategies, which are crucial to reduce the spread of K. pneumoniae in ICUs. *Study Group AOU 'Policlinico-Vittorio Emanuele', Catania, Italy: Patrizia Bellocchi, Giacomo Castiglione, Alida Imbriani, Marinella Astuto, Giuseppa La Camera, Agata Sciacca Key messages Multidrug-resistant K. pneumoniae still represents a threat for Public Health in Italy and globally, due to its high dissemination in intensive care units. Surveillance of colonization and infection by high-risk clones might help in reducing the spread of Klebsiella pneumoniae.


2010 ◽  
Vol 31 (05) ◽  
pp. 528-531 ◽  
Author(s):  
Alexander J. Kallen ◽  
Alicia I. Hidron ◽  
Jean Patel ◽  
Arjun Srinivasan

We evaluated isolates of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii that were reported to the National Healthcare Safety Network from January 2006 through December 2008 to determine the proportion that represented multidrug-resistant phenotypes. The pooled mean percentage of resistance varied by the definition used; however, multidrug resistance was relatively common and widespread.


2019 ◽  
Vol 72 (9-10) ◽  
pp. 312-320
Author(s):  
Sandra Stefan-Mikic ◽  
Branislav Susa ◽  
Sinisa Sevic ◽  
Ivana Hrnjakovic-Cvjetkovic ◽  
Vesna Milosevic ◽  
...  

Introduction. Klebsiella pneumoniae is a Gram-negative nonmotile, encapsulated bacterium. It is a significant opportunistic pathogen, especially in hospital conditions, where most multidrug- resistant strains are present. The aim of this study was to determine the incidence of hospital infections caused by Klebsiella pneumoniae and the incidence of antimicrobial resistance of Klebsiella pneumoniae strains, routinely isolated from patients at the Clinical of Infectious Diseases of the Clinical Center of Vojvodina, in the period from January 1, 2013 to December 31, 2017. Material and Methods. A retrospective study included 1.647 patients with a diagnosis of infectious diseases of bacterial etiology treated at the Clinic of Infectious Diseases of the Clinical Center of Vojvodina. The analysis of primo-isolates from patient material (blood, urine, cerebrospinal fluid, wound/decubitus and throat cultures) was performed to examine the incidence of infections caused by Klebsiella pneumoniae and its antimicrobial resistance to antibiotics. Results. During the five-year study period, 93 primo-isolates of Klebsiella pneumoniae were isolated from urine cultures 52/272 (19.1%), throat swabs 13/108 (12%), wound swabs 12/120 (10.0%), blood cultures 13/285 (4.6%) and one isolate from the liver 1/47 (2.1%). Klebsiella pneumoniae isolates showed the highest sensitivity to tigecycline and colistin (100%). During the study, Klebsiella pneumoniae showed resistance to carbapenem in up to 100%, depending on isolates and the year of study. Conclusion. Klebsiella pneumoniae is a common cause of nosocomial infections. It is sensitive only to tigecycline and colistin (100%), and its resistance to carbapenems and other antibiotics is a major health concern.


2020 ◽  
Vol 41 (S1) ◽  
pp. s343-s344
Author(s):  
Margaret A. Dudeck ◽  
Katherine Allen-Bridson ◽  
Jonathan R. Edwards

Background: The NHSN is the nation’s largest surveillance system for healthcare-associated infections. Since 2011, acute-care hospitals (ACHs) have been required to report intensive care unit (ICU) central-line–associated bloodstream infections (CLABSIs) to the NHSN pursuant to CMS requirements. In 2015, this requirement included general medical, surgical, and medical-surgical wards. Also in 2015, the NHSN implemented a repeat infection timeframe (RIT) that required repeat CLABSIs, in the same patient and admission, to be excluded if onset was within 14 days. This analysis is the first at the national level to describe repeat CLABSIs. Methods: Index CLABSIs reported in ACH ICUs and select wards during 2015–2108 were included, in addition to repeat CLABSIs occurring at any location during the same period. CLABSIs were stratified into 2 groups: single and repeat CLABSIs. The repeat CLABSI group included the index CLABSI and subsequent CLABSI(s) reported for the same patient. Up to 5 CLABSIs were included for a single patient. Pathogen analyses were limited to the first pathogen reported for each CLABSI, which is considered to be the most important cause of the event. Likelihood ratio χ2 tests were used to determine differences in proportions. Results: Of the 70,214 CLABSIs reported, 5,983 (8.5%) were repeat CLABSIs. Of 3,264 nonindex CLABSIs, 425 (13%) were identified in non-ICU or non-select ward locations. Staphylococcus aureus was the most common pathogen in both the single and repeat CLABSI groups (14.2% and 12%, respectively) (Fig. 1). Compared to all other pathogens, CLABSIs reported with Candida spp were less likely in a repeat CLABSI event than in a single CLABSI event (P < .0001). Insertion-related organisms were more likely to be associated with single CLABSIs than repeat CLABSIs (P < .0001) (Fig. 2). Alternatively, Enterococcus spp or Klebsiella pneumoniae and K. oxytoca were more likely to be associated with repeat CLABSIs than single CLABSIs (P < .0001). Conclusions: This analysis highlights differences in the aggregate pathogen distributions comparing single versus repeat CLABSIs. Assessing the pathogens associated with repeat CLABSIs may offer another way to assess the success of CLABSI prevention efforts (eg, clean insertion practices). Pathogens such as Enterococcus spp and Klebsiella spp demonstrate a greater association with repeat CLABSIs. Thus, instituting prevention efforts focused on these organisms may warrant greater attention and could impact the likelihood of repeat CLABSIs. Additional analysis of patient-specific pathogens identified in the repeat CLABSI group may yield further clarification.Funding: NoneDisclosures: None


2021 ◽  
Author(s):  
Mradul Kumar Daga ◽  
Govind Mawari ◽  
Saman Wasi ◽  
Naresh Kumar ◽  
Udbhav Sharma ◽  
...  

Abstract Objective To understand the pattern and types of healthcare associated infections (HAI) at our healthcare facility, and to determine the common causative agents and their antibiotic susceptibility profile. Methods One hundred consecutive patients diagnosed with HAI were enrolled and monitored; the causative organisms isolated on culture were recorded and their sensitivity profile was generated. Results Of the 100 patients diagnosed with HAI (mean age ± SD being 42 ± 17 years), there were a total of 110 hospital acquired infections with 10 patients having two infections each. Out of 100 patients with HAI, 69 patients had ventilator associated pneumonia (VAP), 21 patients had catheter associated urinary tract infection (CAUTI) patients, and 20 patients had central line associated bloodstream infection (CLABSI). There were 10 patients with both VAP and CAUTI. All of the HAIs were device associated. A total of 76 pathogens were isolated on culture. No organism was isolated in 40 HAI. Majority (94.7%) of the organisms isolated from HAIs were gram-negative bacteria and all were multidrug resistant. Seventy-seven of the enrolled patients expired while 23 were discharged from the hospital Conclusions Our study demonstrated that HAIs occur in patients of all age groups; younger patients are not spared. Majority of the HAIs were caused by multidrug resistant gram-negative bacteria and were associated with high patient mortality. Acinetobacter species was the most common organism associated with HAI.


2020 ◽  
Vol 21 (9) ◽  
pp. 3160 ◽  
Author(s):  
Pilar Domingo-Calap ◽  
Beatriz Beamud ◽  
Lucas Mora-Quilis ◽  
Fernando González-Candelas ◽  
Rafael Sanjuán

The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is Klebsiella pneumoniae, whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new K. pneumoniae phages, πVLC5 and πVLC6, isolated from environmental samples. These phages belong to the genus Drulisvirus within the family Podoviridae. Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect K. pneumoniae capsular types K22 and K37. In addition, we found that phage πVLC6 also infects capsular type K13 and is capable of striping the capsules of K. pneumoniae KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage πVLC6 is conferred by a second, divergent depolymerase. Phage πVLC5 encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few Klebsiella capsular types. This constitutes an important challenge for clinical applications.


Sign in / Sign up

Export Citation Format

Share Document