scholarly journals LAMİNASYON TEKNİĞİ İLE ÜRETİLEN FİLMLERE UYGULANAN TEKRARLI YIKAMALARIN, PARLAKLIK, LAMİNASYON KUVVETİ VE OPTİK DANSİTE ÖZELLİKLERİ AÇISINDAN ETKİLERİNİN İNCELENMESİ

2020 ◽  
Vol 15 (4) ◽  
pp. 174-185
Author(s):  
Elif Yılmaz ◽  
Sevda Altaş ◽  
Nildeniz Adman

Metalized yarns are produced by cutting the films in different thicknesses, metalized with aluminum on one or both sides, in a rectangular form in the desired dimensions and wrapping them on bobbins under a certain tension. Textile products made of these yarns are exposed to repetitive washings like most textile products; metal surfaces of metalized yarns are abraded over time, their bright appearance decreases or disappears. It is undesirable because it affects the lifetime of the final product. In the study, laminated films were produced by the lamination technique using different raw materials to produce metalized yarns with the improved fastness and mechanical properties. Laminated films were subjected to repetitive washings at different temperatures, and the effects of washings on the surface appearance of the films, lamination strength, and optical density properties were examined. As a result of the study, it was determined that repetitive washings reduce the lamination strength, the gloss property is affected by raw material type, the sample type, washing temperature, and the number of washing cycles affect the optical density.

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


2016 ◽  
Vol 881 ◽  
pp. 383-386 ◽  
Author(s):  
Raimundo J.S. Paranhos ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

This study evaluated the potential use of Sugarcane Bagasse Ashes (SBA) as a flux, replacing phyllite for the production of enamelled porcelain tile. The raw materials of the standard mass components and the SBA residue were characterized by testing by XRF, XRD, AG, DTA and TGA. Test samples were fabricated, assembled in lots of 3 units and sintered at temperatures of 1150 ° C to 1210 ° C. The results of the physical properties, mechanical properties and SEM of the sintered samples, showed that the formulation, G4 - in which applied 10% of SBA replacing phyllite, sintering temperature 1210 ° C showed better performance as the previously mentioned properties due to the formation of mullite crystals, meeting the prerequisites of standards for enamelled porcelain tile, while reducing the environmental impact and the cost of production.


Author(s):  
Oleksiy Andryushayev ◽  
Olena Ruban ◽  
Yuliia Maslii ◽  
Inna Rusak

The aim. To determine the intensified method of extraction of phenolic compounds from Acorus calamus leaves and optimal conditions for the process. Materials and methods. In order to develop the optimal intensified method of extraction samples were prepared in different conditions of raw materials-extractant ratio, temperature, time and multiplicity. As a raw materials spectrophotometrically pre-standardized Acorus calamus leaves were used. The extraction was carried out in a hermetically sealed ultrasonic extraction reactor PEX 1 (REUS, Contes, France). As the criteria of extraction efficiency were indicators of dry residue and total amount of flavonoids determined using methods described in State Pharmacopoeia of Ukraine. The amount of flavonoids was determined spectrophotometrically on a certified device Specord 200 (Analytik Jena, Germany). Results. According to our research results it was found that ultrasonic action and addition of surfactant significantly improves the efficiency of the extraction process. The optimal conditions for the process were determined. Experimentally proved that the rational raw material-extractant ratio is 1:15. Comparative study of the extraction process with different temperatures showed that the highest amount of extractives is achieved at temperature 70 °C and 45 min of duration. The optimal extraction multiplicity is 3. Conclusions. As a result of the study, the intensified extraction method for Acorus calamus leaves – re-maceration with ultrasound – was established. The conducted researches allowed to develop the method of extraction, expedient in the conditions of the modern pharmaceutical industry.


2011 ◽  
Vol 383-390 ◽  
pp. 3366-3373
Author(s):  
Shuo Qin ◽  
Bo Lin Wu ◽  
Shiao Zhao ◽  
Cong Chang Ma ◽  
Zu Sheng Hu

Red mud is the main solid residue generated during the production of alumina by means of the Bayer process. In order to expand the comprehensive utilization field of red mud and develop new ceramic products with low radioactivity utilizing red mud, the exploration of preparing self-releasing glaze ceramic materials using red mud as raw material was carried out. During the exploration, the self-releasing glaze ceramic materials with low radiation level were produced by normal pressure sintering process using the main ingredients of red mud, red sandstone, barium carbonate and ball clay. The properties of the self-releasing glaze ceramic samples were investigated by the measurements of mechanical properties, X-ray diffraction (XRD), scanning electron microscopy (SEM) and radiation measurement. The results show that the self-releasing glaze ceramic materials have good mechanical properties (the bulk density, 3.10 g/cm3; the compressive strength, 78.00 MPa). Adding barium carbonate to the raw materials and then calcine them to ceramics, which can extend the sintering temperature range and the radioactivity level of the self-releasing glaze ceramic materials can be reduced to that of the natural radioactive background of Guilin Area, Karst landform (the average 60 Total/Timer).


Teknomekanik ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 14-19
Author(s):  
M Saddikin ◽  
Hendri Nurdin ◽  
Primawati Primawati

The raw materials of the timber industry, especially furniture, are increasingly difficult to obtain in the quantity and quality needed. The development efforts carried out were utilizing Nipah coir waste as a raw material for making particle boards. Particle boards are panel boards made of wood particles or materials containing lignocellulose. Nipah plants contain 27.3% lignin and 36.5% cellulose which has the potential to be used as raw material for particleboard production. This study aims to reveal the physical and mechanical properties of particleboards made from Nipah fruit fibre with adhesive using tapioca flour. The making of particle board is done with a ratio of 90%: 10%, 80%: 20%, 70%: 30%, 60%: 40%, by giving a pressure of 100 kg / cm2. Particle testing is carried out according to the JIS A 5908 standard (2003). From this study, the optimum results were obtained in variations of 60%:40%. The particle physical properties which have an average density value of 1.15 gr / cm3 and an average moisture content of 5.8%. While the mechanical properties obtained by the value of Modulus of Elasticity an average of 21,188.93 kg / cm2. This shows the particle board variations of 60%: 40% produced to meet the JIS A 5908 (2003) standard. Based on the analysis of the quality variations 60%: 40% of particle boards can be recommended as raw materials for interior furniture.


2021 ◽  
pp. 252-261

The combustion of fossil fuels results in creating a lot of solid wastes such as fly ash and slag. However, these environmentally unfriendly materials can be used as a raw material for alkali activation – geopolymerization. Although these wastes have been successfully used in industrial production for several decades, its use does not achieve the level of its potential. Today, to achieve a sustainable construction industry, alternative cement has been extensively investigated. Geopolymer (GP) is a kind of material that is obtained from the alkaline activator, and it can be produced from industrial wastes or by-products. The aim of this work was to describe the improvement of mechanical properties of alkali-activated binders – geopolymers made of fly ash and blast furnace slag. The effect of the addition of waste glass in three different values feed into fly ash or GGBFS, and its impact on mechanical properties (compressive and flexural strengths) of geopolymers was examined. The highest value of compressive strength was achieved with 20% waste glass addition to a fly ash sample on 90th day 58,9 MPa. The waste glass was added in the form of broken and crushed glass particles.


2019 ◽  
Vol 46 ◽  
pp. 398-413
Author(s):  
Monica Margarit ◽  
Madalina Dimache

The Necropolis of Chirnogi – Suvita Iorgulescu (Calarasi county) was located on the high terrace of the Danube and was investigated by Done Serba˘nescu (in 1989) by means of the archaeological excavations carried out for the construction of the Danube-Bucharest Channel. For this study, we analysed the archaeological assemblage preserved in the Museum of Gumelnita civilization from Oltenita (Calarasi county) coming from 10 graves, out of a total of 58, which are attributed to the Gumelnita culture (the second half of the 5th millennium BC). The personal adornments are mainly bracelets made of Spondylus valve (16 specimens) which appear in most of the graves, along with an equal number of perforated plates made of Sus scrofa canine, this time the pieces being grouped into two graves. The funeral inventory is complemented by small cylindrical, tubular or biconvex beads, made of various raw materials: Spondylus valve, bone, malachite, cooper and green slate. At the technical level, attention is drawn towards the technological transformation scheme of the raw material, which is extremely uniform for the two main categories of ornaments. Also, the analysed pieces showed different degrees of use-wear, demonstrating on the one hand that they were worn before the deposition in graves, and on the other that the accumulationof these items took place over time.


2020 ◽  
Vol 1015 ◽  
pp. 70-75
Author(s):  
Djoko Sihono Gabriel ◽  
Angga Ananditto

Contaminated plastic waste if undergo a mechanical recycling process will have a low value. This can be overcome by repetitive implementation of Material Value Conservation (MVC) through material purity protection from design stage to the end of the material life cycle. Repetition of recycling up to eight times caused degradation of mechanical properties of plastics by up to 20%. The repetition was done on a laboratory scale with pure polypropylene as raw material. This research was conducted to overcome the degradation of plastic properties by mixing recycled plastic pellets with virgin plastic in the most optimal proportion. Plastic blends with certain compositions were recycled up to 8 times, then its mechanical properties are tested with the American Society for Testing Materials (ASTM) methods. This research revealed the opportunities to utilize the 6th recycled plastic pellets by mixing it with virgin plastic to improve its mechanical properties. Furthermore, this research shows that repetitive recycling of plastic blends with the implementation of material value conservation (MVC) ​​could increase the value of recycled plastic pellets as raw materials and extend the life time of plastic materials.


2015 ◽  
Vol 663 ◽  
pp. 34-41 ◽  
Author(s):  
Fernanda Andreola ◽  
Isabella Lancellotti ◽  
Rosa Taurino ◽  
Cristina Leonelli ◽  
Luisa Barbieri

Virgin raw materials can be partially replaced by glass waste in order to reduce the environmental impact being its recycling a significant problem for municipalities worldwide. In Italy in 2013, approximately 1,600,000 tons of container glass have been collected but it was not possible to recycle all of them in the glass melting process.This work is focused on the valorization of glass waste as raw material in new cement and ceramic products, to convert it from an environmental and economic burden to a profitable, added-value resource in the formulation of new mixes. Several parameters, such as grinding, forming, firing, etc. have been studied.It has been optimized the grinding and the reclaiming step of waste to obtain an alternative raw material for hot and cold consolidation processes. Chemical, physical and mechanical properties of products were carried out. The results show new real possibilities to use high amounts of glass waste as an alternative raw material in products consolidated either by hot or cold techniques, reducing the management problems of the glass waste.


2010 ◽  
Vol 105-106 ◽  
pp. 16-19 ◽  
Author(s):  
Hong Xia Lu ◽  
Zhang Wei ◽  
Rui Zhang ◽  
Hong Liang Xu ◽  
Hai Long Wang ◽  
...  

Nano-Fe particles coating Al2O3 composite powders were prepared by heterogeneous precipitation method with nanometer -Al2O3 and Fe(NO3)3•9H2O as raw materials. The composite powders were analyzed by DSC-TG, XRD,SEM and Zeta potential. Results showed that Fe coating Al2O3 nanometer composite powders were obtained in the condition of being sintered at 500°C for 30min and reduced at 700°C for 1h in H2. The coating Fe nanometer particles are in the shape of sphericity with diameter about 30nm and the dispersion of the powders is uniform. Al2O3/Fe composite ceramics were obtained by hot-pressing (30MPa). The mechanical properties of the composite were investigated after hot press at different temperatures. With the increasing of Fe content in composite ceramics, the hardness of the composite is decreased. Fracture toughness of 10mol%Fe content is 5.62MPa after sintered at 1400°C, which is increasing 57% high than that of monolithic Al2O3 ceramics.


Sign in / Sign up

Export Citation Format

Share Document