scholarly journals The Approach of the Exact Sciences and Philosophy Towards the Looming Climate Change Disaster

2021 ◽  
pp. 1-14
Author(s):  
Helena Ciążela

This paper analyses the attitude of the contemporary philosophy to the problems associated with increasingly radical diagnoses concerning anthropogenic climate changes that may lead the human civilization on Earth to a global catastrophe. One can identify three approaches to this issue in contemporary philosophy: involvement in the breakthrough taking place; evaluation of the change process from an axiological perspective or ignoring the evolving phenomena on the grounds that it is not possible to define them meaningfully from the perspective of theoretical orientations that currently dominate the contemporary philosophy.  

The Holocene ◽  
2021 ◽  
pp. 095968362110116
Author(s):  
Maegen L Rochner ◽  
Karen J Heeter ◽  
Grant L Harley ◽  
Matthew F Bekker ◽  
Sally P Horn

Paleoclimate reconstructions for the western US show spatial variability in the timing, duration, and magnitude of climate changes within the Medieval Climate Anomaly (MCA, ca. 900–1350 CE) and Little Ice Age (LIA, ca. 1350–1850 CE), indicating that additional data are needed to more completely characterize late-Holocene climate change in the region. Here, we use dendrochronology to investigate how climate changes during the MCA and LIA affected a treeline, whitebark pine ( Pinus albicaulis Engelm.) ecosystem in the Greater Yellowstone Ecoregion (GYE). We present two new millennial-length tree-ring chronologies and multiple lines of tree-ring evidence from living and remnant whitebark pine and Engelmann spruce ( Picea engelmannii Parry ex. Engelm.) trees, including patterns of establishment and mortality; changes in tree growth; frost rings; and blue-intensity-based, reconstructed summer temperatures, to highlight the terminus of the LIA as one of the coldest periods of the last millennium for the GYE. Patterns of tree establishment and mortality indicate conditions favorable to recruitment during the latter half of the MCA and climate-induced mortality of trees during the middle-to-late LIA. These patterns correspond with decreased growth, frost damage, and reconstructed cooler temperature anomalies for the 1800–1850 CE period. Results provide important insight into how past climate change affected important GYE ecosystems and highlight the value of using multiple lines of proxy evidence, along with climate reconstructions of high spatial resolution, to better describe spatial and temporal variability in MCA and LIA climate and the ecological influence of climate change.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Helia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kateryna Vasylkovska ◽  
Olha Andriienko ◽  
Oleksii Vasylkovskyi ◽  
Andrii Andriienko ◽  
Popov Volodymyr ◽  
...  

Abstract The analysis of the production and yield of sunflower seeds in Ukraine for the period from 2000 to 2019 was conducted in the article. The comparative analysis of the gross harvest of sunflower seeds and the export of sunflower oil for the years under research was carried out. The dependence of exports on gross harvest was revealed and its share was calculated. It was determined that the export of sunflower oil has increased over the years under research, which indicates a significant Ukraine’s export potential. It was found that the increase in the share of exports by 15.9% was made possible by a qualitative change in yield, that was ensured by the changes in the cultivation technology and by the selection of sunflower hybrids that are better adapted to climate changes. The recommendations for further improvement of cultivation technology in connection with climate change in order to further increase yields and the export potential of Ukraine were given.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1192
Author(s):  
Natalia Gutiérrez ◽  
Leyre López-de-Silanes ◽  
Carlos Escott ◽  
Iris Loira ◽  
Juan Manuel del Fresno ◽  
...  

Canopy management practices in vineyards, such as sprawling systems and shoot trimming, can change the accumulation of metabolites in grapes. The use of elicitors of biological origin on grapevines of Vitis vinifera red grape varieties may also modulate the chemical composition of the berries. These modifications are often observed in the accumulation of phenolic compounds, including pigments. Both technical approaches are alternatives involved in minimizing the effects of global climate change in warm areas. The increase of temperature related to climate change accelerates the accumulation of sugars, but produces unbalanced grapes. This work establishes the use of button sensors to monitor the climate changes occurring at grape cluster level. Together with climate monitoring, conventional instrumental analytical techniques are used to follow up the chemical composition and the phenolic fraction of grapes in four different production areas in Spain. The effect of either treatment seems variable and to be affected by external factors besides the treatment itself and the climate conditions. While there is a fine effect that correlates with the use of elicitors in varieties like Merlot and Tempranillo, there is minimal improvement observed in Tintilla de Rota. The total phenolic index increases were between 2.3% and 11.8% in the first two parcels. The same happened with the vineyard’s canopy management systems, with increased pigment accumulation and the total phenolic index rising (37.7% to 68.7%) after applying intense shoot trimming, or a variation in sugar concentrations when using sprawl conduction. This study aims to provide viticulturists and oenologists in particular, and farmers in general, with data on the field regarding the use of alternative sustainable practices in the cultivation of grapes. The techniques used involved 100% natural products without adjuvants. The benefits obtained from applying some of these practices would be to produce technically mature grapes despite climate changes, and the elaboration of more balanced wines.


Author(s):  
Hyun Min Sung ◽  
Jisun Kim ◽  
Sungbo Shim ◽  
Jeong-byn Seo ◽  
Sang-Hoon Kwon ◽  
...  

AbstractThe National Institute of Meteorological Sciences-Korea Meteorological Administration (NIMS-KMA) has participated in the Coupled Model Inter-comparison Project (CMIP) and provided long-term simulations using the coupled climate model. The NIMS-KMA produces new future projections using the ensemble mean of KMA Advanced Community Earth system model (K-ACE) and UK Earth System Model version1 (UKESM1) simulations to provide scientific information of future climate changes. In this study, we analyze four experiments those conducted following the new shared socioeconomic pathway (SSP) based scenarios to examine projected climate change in the twenty-first century. Present day (PD) simulations show high performance skill in both climate mean and variability, which provide a reliability of the climate models and reduces the uncertainty in response to future forcing. In future projections, global temperature increases from 1.92 °C to 5.20 °C relative to the PD level (1995–2014). Global mean precipitation increases from 5.1% to 10.1% and sea ice extent decreases from 19% to 62% in the Arctic and from 18% to 54% in the Antarctic. In addition, climate changes are accelerating toward the late twenty-first century. Our CMIP6 simulations are released to the public through the Earth System Grid Federation (ESGF) international data sharing portal and are used to support the establishment of the national adaptation plan for climate change in South Korea.


2009 ◽  
Vol 22 (10) ◽  
pp. 2639-2658 ◽  
Author(s):  
Grant Branstator ◽  
Frank Selten

Abstract A 62-member ensemble of coupled general circulation model (GCM) simulations of the years 1940–2080, including the effects of projected greenhouse gas increases, is examined. The focus is on the interplay between the trend in the Northern Hemisphere December–February (DJF) mean state and the intrinsic modes of variability of the model atmosphere as given by the upper-tropospheric meridional wind. The structure of the leading modes and the trend are similar. Two commonly proposed explanations for this similarity are considered. Several results suggest that this similarity in most respects is consistent with an explanation involving patterns that result from the model dynamics being well approximated by a linear system. Specifically, the leading intrinsic modes are similar to the leading modes of a stochastic model linearized about the mean state of the GCM atmosphere, trends in GCM tropical precipitation appear to excite the leading linear pattern, and the probability density functions (PDFs) of prominent circulation patterns are quasi-Gaussian. There are, on the other hand, some subtle indications that an explanation for the similarity involving preferred states (which necessarily result from nonlinear influences) has some relevance. For example, though unimodal, PDFs of prominent patterns have departures from Gaussianity that are suggestive of a mixture of two Gaussian components. And there is some evidence of a shift in probability between the two components as the climate changes. Interestingly, contrary to the most prominent theory of the influence of nonlinearly produced preferred states on climate change, the centroids of the components also change as the climate changes. This modification of the system’s preferred states corresponds to a change in the structure of its dominant patterns. The change in pattern structure is reproduced by the linear stochastic model when its basic state is modified to correspond to the trend in the general circulation model’s mean atmospheric state. Thus, there is a two-way interaction between the trend and the modes of variability.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hamed Abbasi

Abstract Objective Human is accustomed to climatic conditions of the environment where they are born and live throughout their lifetime. The aim of this study is to examine mood swings and depression caused by sudden climate changes that have not yet given the humans a chance to adapt. Results Our results showed that depression could be affected by climate change and as a result, the behavior of climatic elements and trends has damaged mental health in the western regions of Iran. By investigating the trends and changes of climatic time series and their relationship with the rate of depression in urban areas of western Iran, it can be said that climate change is probably a mental health challenge for urban populations. Climate change is an important and worrying issue that makes the life difficult. Rapid climate changes in western Iran including rising air temperature, changes in precipitation, its regime, changes cloudiness and the amount of sunlight have a negative effects on health. The results showed that type of increasing or decreasing trend, as well as different climatic elements in various seasons did not have the same effect on the rate of depression in the studied areas.


2010 ◽  
Vol 1 (1) ◽  
pp. 2-16 ◽  
Author(s):  
Guy Howard ◽  
Katrina Charles ◽  
Kathy Pond ◽  
Anca Brookshaw ◽  
Rifat Hossain ◽  
...  

Drinking-water supply and sanitation services are essential for human health, but their technologies and management systems are potentially vulnerable to climate change. An assessment was made of the resilience of water supply and sanitation systems against forecast climate changes by 2020 and 2030. The results showed very few technologies are resilient to climate change and the sustainability of the current progress towards the Millennium Development Goals (MDGs) may be significantly undermined. Management approaches are more important than technology in building resilience for water supply, but the reverse is true for sanitation. Whilst climate change represents a significant threat to sustainable drinking-water and sanitation services, through no-regrets actions and using opportunities to increase service quality, climate change may be a driver for improvements that have been insufficiently delivered to date.


Author(s):  
Gizachew Kabite ◽  
Misgana Muleta ◽  
Berhan Gessesse

Land cover and climate changes greatly influence hydrologic responses of a basin. However, the response vary from basin to basin depending on the nature and severity of the changes and basin characteristics. Moreover, the combined impacts of the changes affect hydrologic responses of a basin in an offsetting or synergistic manner. This study quantified the separate and combined impacts, and the relative contributions of land cover and climate changes on multiple hydrological regimes (i.e., surface runoff, streamflow, groundwater recharge evapotranspiration) for the Dhidhessa Subbasin. Land cover and climate change data were obtained from a recent study completed for the basin. Calibrated Soil and Water Analysis Tool (SWAT) was used to quantify the impacts. The result showed that SWAT model performed well for the Dhidhessa Subbasin in predicting the water balance components. Substantial land cover change as well as an increasing temperature and rainfall trends were reported in the river basin during the past three decades. In response to these changes, surface runoff, streamflow and actual evapotranspiration (AET) increased while groundwater recharge declined. Surface runoff was more sensitive to land cover than to climate changes whereas streamflow and AET were more sensitive to climate change than to land cover change. The combined impacts played offsetting effect on groundwater recharge and AET while inconsistent effects within study periods for other hydrologic responses. Overall, the predicted hydrologic responses will have negative impacts on agricultural production and water resources availability. Therefore, the implementation of integrated watershed management strategies such as soil and water conservation and afforestation could reverse the negative impacts.


2018 ◽  
Vol 15 ◽  
pp. 231-237 ◽  
Author(s):  
Martín José Montero-Martínez ◽  
Julio Sergio Santana-Sepúlveda ◽  
Naydú Isabel Pérez-Ortiz ◽  
Óscar Pita-Díaz ◽  
Salvador Castillo-Liñan

Abstract. It is a matter of current study to determine potential climate changes in different parts of the world, especially in regions like a basin which has the potential to affect socioeconomic and environmental issues in a defined area. This study provides a comparison between several climate change indices trends of two very different basins in Mexico, one located in the northern arid region (the Conchos River basin) and the other in the southern humid area (the Usumacinta River basin). First, quality control, homogenization, and completion of the missing data were applied before calculating the climate change indices and their respective trends for the combined period 1961–1994. A clear warming signal was found for the two basins in addition to an increment in the DTR, in agreement with other studies in Mexico. Also, the Conchos River basin was found to be more humid and the Usumacinta River basin drier, in accordance to a supposed seesaw behavior indicated in previous analysis.


Sign in / Sign up

Export Citation Format

Share Document