scholarly journals Effects of Heat Stress Exposure and Climate Change on Health and Safety of Outdoor Workers

2021 ◽  
Vol 16 (3) ◽  
pp. 836-847
Author(s):  
Tarek Abokhashabah ◽  
Bassem Jamoussi ◽  
Ahmed Saleh Summan ◽  
Ezz Abdelfattah ◽  
Ijaz Ahmad

The studies carried in the world regarding the possible significant influence of climate change on the health and safety of outdoor workers has not been given the due consideration (especially in the least developed and developing countries). Hundreds and thousands of outdoor workers are exposed to elevated temperatures, humid environments and climate extremes in combination with urban air pollution; which is ultimately impacting their safety and well-being. The statistics show that in the past few years, due to the rise in temperature on earth and frequent heat waves within urban settlements, an abrupt increase has been observed in the rate of heat-related health problems. Exposure to extreme heat (exceeding 40 ºC)causes many direct and indirect health hazards, which include vector-borne diseases and exposure to certain harmful chemicals. Currently, the climatic and heat-related effects are decreasing the working capacity of workers and in the future it is projected that the frequency and magnitude of these effects will increase. With the rise in temperature and the occurrence of frequent heat waves in urban areas, the number of health issues due to high (maximum average)temperature has increased rapidly. This article discusses the impacts of heat exposure and climatic change on productivity,health and safety of outdoor workers by summarizing findings from the literature, and eventually recommends control measures for reducing heat exposure at the outdoor work areasand climatic adaptations. In addition, it argues that there is a need for more research about the impacts on health and economic conditions due to heat and climate change in the workplace on global level (especially in developing countries).

Author(s):  
Moda ◽  
Filho ◽  
Minhas

The literature on the potential impacts of climate change on the health of outdoor workers has received limited attention as a whole, and in sub-Saharan African countries in particular. Yet, substantial numbers of workers are experiencing the health effects of elevated temperature, in combination with changes in precipitation patterns, climate extremes and the effects of air pollution, which have a potential impact on their safety and wellbeing. With increased temperatures within urban settlements and frequent heats waves, there has been a sudden rise in the occurrence of heat-related illness leading to higher levels of mortality, as well as other adverse health impacts. This paper discusses the impacts of extreme heat exposure and health concerns among outdoor workers, and the resultant impacts on their productivity and occupational safety in tropical developing countries with a focus on Sub-Saharan Africa, where there is a dearth of such studies. Aside from the direct effects caused by extreme heat exposure, other indirect health hazards associated with increasing heat among this group includes exposures to hazardous chemicals and other vector-borne diseases. In addition, reduced work capacity in heat-exposed jobs will continue to rise and hinder economic and social development in such countries. There is an urgent need for further studies around the health and economic impacts of climate change in the workplace, especially in tropical developing countries, which may guide the implementation of the measures needed to address the problem.


2021 ◽  
Vol 899 (1) ◽  
pp. 012018
Author(s):  
D Apostolopoulou ◽  
S Tsoka

Abstract Extreme thermal conditions and heat waves, as a result of global warming, have increased in recent years. Especially in the Mediterranean area, cities face higher temperatures during summer months which severely affect thermal comfort and citizens’ well-being. In this context, this study aims to evaluate the role of urban greenery as a mitigation strategy and focuses on its effect towards the improvement of the urban microclimate and thermal comfort under extreme summer conditions. To this aim, a typical square, located in Athens, Greece, has been chosen as a case study. The microclimatic conditions are evaluated for its present state and after an increase of 20% of soil surface and 30% of trees, while both current (i.e., 2020) and future summer climatic conditions (for the year 2060) are examined. It was also proposed that all the soil surfaces would be covered in grass. The potential air temperature, mean radiant temperature and surface temperature are analysed by simulation means, using the ENVI-met microclimate simulation tool. The results of this study showed that increasing the vegetation ratio inside the study area contributes to considerably lower surface temperatures, while a significant reduction on mean radiant and air temperature at the pedestrian level is also achieved, forming better microclimate conditions. Urban greenery is an important factor for healthy and resilient cities. Its presence can provide lower temperatures in the pedestrian level during summer months, reforming the microclimate. The outcomes of this study can be used by urban planners and stakeholders to improve environmentally urban areas, mitigate the results of climate change, and create resilient cities.


Author(s):  
Rüdiger Grote

Two phenomena that can cause large numbers of premature human deaths have gained attention in the last years: heat waves and air pollution. These two effects have two things in common: They are closely related to climate change and they are particularly intense in urban areas. Urban areas are particular susceptible to these impacts because they can store lots of heat and have little opportunity for cooling off (also known as the urban heat island effect). In order to mitigate these impacts and to establish an environment that protects human health and improve well-being, implementation of green infrastructure – trees, green walls, and green roofs – is commonly proposed as a remedy. More trees, hedges and lawns are intuitively welcome by people living in cities for their beautifying effects, but to which degree can such greening actually counterbalance the expected effects of climate change? In this review I would like to investigate what science can offer to answer this question.


2021 ◽  
Author(s):  
Walter Leal Filho ◽  
Liza Tuladhar ◽  
Chunlan Li ◽  
Abdul-Lateef Babatunde Balogun ◽  
Marina Kovaleva ◽  
...  

Abstract Climate change is associated with extreme weather events such as heat waves, droughts, floods, hurricanes, storms, and wildfires globally. Within cities, the impacts of climate change are quite conspicuous as the percentage of urban dwellers is expected to reach about 70% by 2050. As the planet warms up, temperatures in cities are likely to increase more than in rural areas. These dual challenges severely impact urban residents. This paper reports on a study on the impacts of climate change on the health and liveability of a set of 15 cities, in industrialised and developing countries from around the world. The assessment, based on the literature, examined the average temperature, maximum temperature and relative humidity of each city, and this data has been correlated with their liveability. It was complemented by a survey focused on residents of 109 cities from Africa, Asia, Europe, Latin America, North America Oceania. The findings show that developing countries seem to be especially struggling to adapt to the threats caused by increasing temperatures. Moreover, cities in industrialised countries are not immune to climate change impacts. The paper also outlines some mitigation and adaptation measures, which can be implemented to improve the liveability in cities and the well-being of their populations, and to make them more sustainable.


Author(s):  
Mark Maslin

What is dangerous climate change? What is our coping range? ‘Climate change impacts’ assesses the potential effects of climate change on the natural environment as well as on human societies and our economies. Climate change impacts will increase significantly as global temperature rises. Climate change will affect the return period and severity of floods, droughts, heat waves, and storms. Coastal cities and towns will be especially vulnerable as sea-level rise will worsen the effects of floods and storm surges. Water and food security and public health will become the most important problems facing all countries. Climate change also threatens global biodiversity and the well being of billions of people.


Author(s):  
Costas A. Varotsos ◽  
Yuri A. Mazei

There is increasing evidence that extreme weather events such as frequent and intense cold spells and heat waves cause unprecedented deaths and diseases in both developed and developing countries. Thus, they require extensive and immediate research to limit the risks involved. Average temperatures in Europe in June–July 2019 were the hottest ever measured and attributed to climate change. The problem, however, of a thorough study of natural climate change is the lack of experimental data from the long past, where anthropogenic activity was then very limited. Today, this problem can be successfully resolved using, inter alia, biological indicators that have provided reliable environmental information for thousands of years in the past. The present study used high-resolution quantitative reconstruction data derived from biological records of Lake Silvaplana sediments covering the period 1181–1945. The purpose of this study was to determine whether a slight temperature change in the past could trigger current or future intense temperature change or changes. Modern analytical tools were used for this purpose, which eventually showed that temperature fluctuations were persistent. That is, they exhibit long memory with scaling behavior, which means that an increase (decrease) in temperature in the past was always followed by another increase (decrease) in the future with multiple amplitudes. Therefore, the increase in the frequency, intensity, and duration of extreme temperature events due to climate change will be more pronounced than expected. This will affect human well-being and mortality more than that estimated in today’s modeling scenarios. The scaling property detected here can be used for more accurate monthly to decadal forecasting of extreme temperature events. Thus, it is possible to develop improved early warning systems that will reduce the public health risk at local, national, and international levels.


2020 ◽  
pp. 709-729
Author(s):  
Pitchayanin Sukholthaman ◽  
Kunio Shirahada

Knowledge management (KM) is a key factor to increase effectiveness of management system. There have been researches of KM on many environmental services. Unfortunately, only a few researches have focused on sustainable service for Municipal Solid Waste (MSW). There are evidences of ineffective waste management causing socio-economic and environmental problems, especially in urban areas of developing countries. Humans live in service economy and knowledge society. Waste management is one of the most important public services that all residents should receive while knowledge is needed to make service run smoothly and sustainably. This paper combines concepts of sustainable service and KM to clarify the importance and how these concepts have impacts on societal well-being. Literature reviews and questionnaire surveys are main analysis methods of this paper. Sustainable service with KM roles will be described and co-created values are identified.


Author(s):  
Karin Lundgren Kownacki ◽  
Chuansi Gao ◽  
Kalev Kuklane ◽  
Aneta Wierzbicka

Climate change increases the risks of heat stress, especially in urban areas where urban heat islands can develop. This literature review aims to describe how severe heat can occur and be identified in urban indoor environments, and what actions can be taken on the local scale. There is a connection between the outdoor and the indoor climate in buildings without air conditioning, but the pathways leading to the development of severe heat levels indoors are complex. These depend, for example, on the type of building, window placement, the residential area’s thermal outdoor conditions, and the residents’ influence and behavior. This review shows that only few studies have focused on the thermal environment indoors during heat waves, despite the fact that people commonly spend most of their time indoors and are likely to experience increased heat stress indoors in the future. Among reviewed studies, it was found that the indoor temperature can reach levels 50% higher in °C than the outdoor temperature, which highlights the importance of assessment and remediation of heat indoors. Further, most Heat-Health Warning Systems (HHWS) are based on the outdoor climate only, which can lead to a misleading interpretation of the health effects and associated solutions. In order to identify severe heat, six factors need to be taken into account, including air temperature, heat radiation, humidity, and air movement as well as the physical activity and the clothes worn by the individual. Heat stress can be identified using a heat index that includes these six factors. This paper presents some examples of practical and easy to use heat indices that are relevant for indoor environments as well as models that can be applied in indoor environments at the city level. However, existing indexes are developed for healthy workers and do not account for vulnerable groups, different uses, and daily variations. As a result, this paper highlights the need for the development of a heat index or the adjustment of current thresholds to apply specifically to indoor environments, its different uses, and vulnerable groups. There are several actions that can be taken to reduce heat indoors and thus improve the health and well-being of the population in urban areas. Examples of effective measures to reduce heat stress indoors include the use of shading devices such as blinds and vegetation as well as personal cooling techniques such as the use of fans and cooling vests. Additionally, the integration of innovative Phase Change Materials (PCM) into facades, roofs, floors, and windows can be a promising alternative once no negative health and environmental effects of PCM can be ensured.


Author(s):  
Sirajuddin M Horaginamani ◽  
M Ravichandran

Though water and land pollution is very dangerous, air pollution has its own peculiarities, due to its transboundary dispersion of pollutants over the entire world. In any well planned urban set up, industrial pollution takes a back seat and vehicular emissions take precedence as the major cause of urban air pollution. Air pollution is one of the serious problems faced by the people globally, especially in urban areas of developing countries like India. All these in turn lead to an increase in the air pollution levels and have adverse effects on the health of people and plants. Western countries have conducted several studies in this area, but there are only a few studies in developing countries like India. A study on ambient air quality in Tiruchirappalli urban area and its possible effects selected plants and human health has been undertaken, which may be helpful to bring out possible control measures. Keywords: ambient air quality; respiratory disorders; APTI; human health DOI: 10.3126/kuset.v6i2.4007Kathmandu University Journal of Science, Engineering and Technology Vol.6. No II, November, 2010, pp.13-19


2020 ◽  
Author(s):  
Paul Hamer ◽  
Heidelinde Trimmel ◽  
Philipp Weihs ◽  
Stéphanie Faroux ◽  
Herbert Formayer ◽  
...  

<p>Climate change threatens to exacerbate existing problems in urban areas arising from the urban heat island. Furthermore, expansion of urban areas and rising urban populations will increase the numbers of people exposed to hazards in these vulnerable areas. We therefore urgently need study of these environments and in-depth assessment of potential climate adaptation measures.</p><p>We present a study of heat wave impacts across the urban landscape of Vienna for different future development pathways and for both present and future climatic conditions. We have created two different urban development scenarios that estimate potential urban sprawl and optimized development concerning future building construction in Vienna and have built a digital representation of each within the Town Energy Balance (TEB) urban surface model. In addition, we select two heat waves of similar frequency of return representative for present and future conditions (following the RCP8.5 scenario) of the mid 21<sup>st</sup> century and use the Weather Research and Forecasting Model (WRF) to simulate both heat wave events. We then couple the two representations urban Vienna in TEB with the WRF heat wave simulations to estimate air temperature, surface temperatures and human thermal comfort during the heat waves. We then identify and apply a set of adaptation measures within TEB to try to identify potential solutions to the problems associated with the urban heat island.</p><p>Global and regional climate change under the RCP8.5 scenario causes the future heat wave to be more severe showing an increase of daily maximum air temperature in Vienna by 7 K; the daily minimum air temperature will increase by 2-4 K. We find that changes caused by urban growth or densification mainly affect air temperature and human thermal comfort local to where new urbanisation takes place and does not occur significantly in the existing central districts.</p><p>Exploring adaptation solutions, we find that a combination of near zero-energy standards and increasing albedo of building materials on the city scale accomplishes a maximum reduction of urban canyon temperature of 0.9 K for the minima and 0.2 K for the maxima. Local scale changes of different adaption measures show that insulation of buildings alone increases the maximum wall surface temperatures by more than 10 K or the maximum mean radiant temperature (MRT) in the canyon by 5 K.  Therefore, additional adaptation to reduce MRT within the urban canyons like tree shade are needed to complement the proposed measures.</p><p>This study concludes that the rising air temperatures expected by climate change puts an unprecedented heat burden on Viennese inhabitants, which cannot easily be reduced by measures concerning buildings within the city itself. Additionally, measures such as planting trees to provide shade, regional water sensitive planning and global reduction of greenhouse gas emissions in order to reduce temperature extremes are required.</p><p>We are now actively seeking to apply this set of tools to a wider set of cases in order to try to find effective solutions to projected warming resulting from climate change in urban areas.</p>


Sign in / Sign up

Export Citation Format

Share Document