scholarly journals Hydroxytriazene Derived from Sulphanilamide: Spectrophotometric and Biological Applications

2020 ◽  
Vol 36 (05) ◽  
pp. 855-862
Author(s):  
Laxmi Kunwar Chauhan ◽  
Kshipra Nimodia ◽  
Pradhyuman Singh Ranawat ◽  
Ajay Kumar Goswami ◽  
Prabhat Kumar Baroliya

In this investigation, we report synthesis, spectrophotometric application and antimicrobial activities of 3-hydroxy-3-(4-chlorophenyl)-1-(4- sulphonamido)phenyltriazene(HCNT) and its Fe(III) complex [Fe(HCNT)2(H2O)2]. The complex has been synthesized by traditional as well as mechanochemical routes. These compounds have been characterized and screened for antimicrobial activity against bacterial strains i.e. E. coli, S. aureus, S. pyogenes, P. aeruginosa and fungal strains i.e. A.clavatus, A. niger, C. albicans using brothmicrodilution method. The results indicate that the compounds may serve as better bactericides compared to fungicides and the molar composition of iron(III) complex was found 1:2 (Fe:HCNT) by spectrophotometric study.

2016 ◽  
Vol 5 (09) ◽  
pp. 4885 ◽  
Author(s):  
Khushbu Pandey ◽  
Mahendra Singh* ◽  
Bharat Pandey ◽  
Anshulika Upadhyaya ◽  
Kamal K. Pande

The present study was carried out for phytochemical screening of principle bioactive compounds and antimicrobial activity in Elaeocarpus ganitrus Roxb., Phytochemical analysis revealed the presence of saponin, terpenoid, steroid, saponin, flavonoid, tannin and alkaloid. The petroleum, ether, chloroform, methanol, acetone and aqueous extracts were subjected to antimicrobial activity against bacterial strains Staphylococcus aureus, Pseudomonas, E. coli and Bacillus subtilis against anti-fungal strains A.awamori, A.fumigatus, Rhizopus oryzae, Trichoderma viridae and C.oryzae. The antibacterial and antifungal activity was evaluated by disc-diffusion method.


2018 ◽  
Vol 24 (2) ◽  
pp. 113-117 ◽  
Author(s):  
Hua-Nan Peng ◽  
Li-Min Ye ◽  
Ming Zhang ◽  
Yan-Chun Yang ◽  
Jie Zheng

AbstractThe title compounds were synthesized and characterized by IR,1H NMR,13C NMR and HRMS data. Their antimicrobial activities against bacterial strainsEscherichia coliand fungal strainsAspergillus nigerwere evaluated.


Author(s):  
TAMANNA SULTANA ◽  
ARUP KUMAR MITRA ◽  
SATADAL DAS

Objectives: Due to emerging drug-resistant microorganisms throughout the world, newer antimicrobial agents should be looked for. Plants are enriched with different bioactive chemicals. In this study, we searched antibacterial activities of some mangrove plant extracts against Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. Methods: In the present study, the antimicrobial activity of the leaves of Bruguiera gymnorhiza, Excoecaria agallocha, Avicennia alba, and Aegialitis rotundifolia was evaluated against a few reference pathogenic bacterial strains, namely, P. aeruginosa ATCC 27853, E. coli ATCC 25922, S. aureus ATCC 29213, and multidrug-resistant bacterial strains E. coli extended-spectrum beta-lactamases strain. Aqueous, ethanolic, methanolic, and dimethyl sulfoxide (DMSO) extracts were studied. The antimicrobial activities of the organic solvent extracts on the various test microorganisms were investigated using agar well diffusion technique followed by determination of minimum inhibitory concentration values by serial dilution in a microtiter plate. Results: Ethanol and DMSO extracts of B. gymnorhiza exhibited promising antimicrobial activity followed by extracts of A. alba and E. agallocha. Among all microorganisms studied, P. aeruginosa ATCC 27853 showed significant growth inhibition with ethanol and DMSO extracts. Conclusion: Extracts of some mangrove plants, particularly, B. gymnorhiza showed very good antimicrobial activities against common microbial agents causing human infections and in general mangrove plants appear to act better on P. aeruginosa.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Muhammad Abdul Qadir ◽  
Syeda Kiran Shahzadi ◽  
Asad Bashir ◽  
Adil Munir ◽  
Shabnam Shahzad

The study was designed to evaluate the phenolic, flavonoid contents and antioxidant and antimicrobial activities of onion (Allium cepa), garlic (Allium sativum), mint (Mentha spicata), thyme (Thymus vulgaris), oak (Quercus), aloe vera (Aloe barbadensis Miller), and ginger (Zingiber officinale). All extracts showed a wide range of total phenolic contents, that is, 4.96 to 98.37 mg/100 g gallic acid equivalents, and total flavonoid contents, that is, 0.41 to 17.64 mg/100 g catechin equivalents. Antioxidant activity (AA) was determined by measuring reducing power, inhibition of peroxidation using linoleic acid system, and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activity. Different extracts inhibited oxidation of linoleic acid by 16.6–84.2% while DPPH radical scavenging activity (IC50 values) ranged from 17.8% to 79.1 μg/mL. Reducing power at 10 mg/mL extract concentration ranged from 0.11 to 0.84 nm. Furthermore the extracts of these medicinal herbs in 80% methanol, 80% ethanol, 80% acetone, and 100% water were screened for antimicrobial activity by disc diffusion method against selected bacterial strains, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pasteurella multocida, and fungal strains, Aspergillus niger, Aspergillus flavus, Rhizopus solani, and Alternaria alternata. The extracts show better antimicrobial activity against bacterial strains as compared to fungal strains. Results of various assays were analyzed statistically by applying appropriate statistical methods.


Author(s):  
Singh Gurvinder ◽  
Singh Prabhsimran ◽  
Dhawan R. K.

In order to develop new antimicrobial agents, a series of 3-formyl indole based Schiff bases were synthesized by reacting 3-formyl indole(indole-3-carboxaldehyde) with substituted aniline taking ethanol as solvent. The reaction was carried in the presence of small amount of p-toluene sulphonic acid as catalyst.All the synthesized compounds were characterized by IR, 1H-NMR spectral analysis. All the synthesized compounds were evaluated for antimicrobial activity against two gram positive bacterial strains (B. subtilisand S. aureus) and two gram negative bacterial strains (P. aeruginosaand E. coli) and one fungal strain (C. albicans). All the synthesized compounds were found to have moderate to good antimicrobial activity. The  standard drug amoxicillin, fluconazole were used for antimicrobial activity. Among the synthesized compounds, the maximum antimicrobial activity was shown by compounds GS04, GS07, GS08 and GS10.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1406
Author(s):  
Rita Cava-Roda ◽  
Amaury Taboada-Rodríguez ◽  
Antonio López-Gómez ◽  
Ginés Benito Martínez-Hernández ◽  
Fulgencio Marín-Iniesta

Plant bioactive compounds have antimicrobial and antioxidant activities that allow them to be used as a substitute for synthetic chemical additives in both food and food packaging. To improve its sensory and bactericidal effects, its use in the form of effective combinations has emerged as an interesting possibility in the food industry. In this study, the antimicrobial activities of essential oils (EOs) of cinnamon bark, cinnamon leaves, and clove and the pure compounds vanillin, eugenol, and cinnamaldehyde were investigated individually and in combination against Listeria monocytogenes and Escherichia coli O157:H7. The possible interactions of combinations of pure compounds and EOs were performed by the two-dimensional checkerboard assay and isobologram methods. Vanillin exhibited the lowest antimicrobial activity (MIC of 3002 ppm against L. monocytogenes and 2795 ppm against E. coli O157:H7), while clove and cinnamon bark EOs exhibited the highest antimicrobial activity (402–404 against L. monocytogenes and 778–721 against E. coli O157:H7). For L. monocytogenes, pure compound eugenol, the main component of cinnamon leaves and clove, showed lower antimicrobial activity than EOs, which was attributed to the influence of the minor components of the EOs. The same was observed with cinnamaldehyde, the main component of cinnamon bark EO. The combinations of vanillin/clove EO and vanillin/cinnamon bark EO showed the most synergistic antimicrobial effect. The combination of the EOs of cinnamon bark/clove and cinnamon bark/cinnamon leaves showed additive effect against L. monocytogenes but indifferent effect against E. coli O157:H7. For L. monocytogenes, the best inhibitory effects were achieved by cinnamon bark EO (85 ppm)/vanillin (910 ppm) and clove EO (121 ppm)/vanillin (691 ppm) combinations. For E. coli, the inhibitory effects of clove EO (104 ppm)/vanillin (1006 ppm) and cinnamon leaves EO (118 ppm)/vanillin (979 ppm) combinations were noteworthy. Some of the tested combinations increased the antimicrobial effect and would allow the effective doses to be reduced, thereby offering possible new applications for food and active food packaging.


2014 ◽  
Vol 2 (4) ◽  
pp. 521-524
Author(s):  
RP Praveen ◽  
Ashalantha Nair

The aim of the present study was to compare the antimicrobial efficacy of methanolic extract of root, callus and fruit of Myxopyrum smilacifolium Blume. Antimicrobial activity was tested using agar well diffusion with four bacterial strains viz: Escherechia coli, Enterococcus faecalis, Bacillus subtilis and Staphylococcus aureus of which E. coli alone was gram negative. The fungal strain employed was Candida albicans. Root extracts shown to be effective only against B. subtilis. Fruit extracts showed the maximum antimicrobial activity against all the microbial species considered for the current study except against S. aureus. Highlight of the present study was the antimicrobial activity of callus extracts. DOI: http://dx.doi.org/10.3126/ijasbt.v2i4.11362  Int J Appl Sci Biotechnol, Vol. 2(4): 521-524 


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Phan-Canh Trinh ◽  
Le-Thi-Thanh Thao ◽  
Hoang-Tran-Viet Ha ◽  
TuAnh Nguyen

Asteraceae species were widely applied in traditional medicines in Asian countries as sources of natural antioxidants and antimicrobial agents. This study aimed to evaluate DPPH-scavenging capacities and antimicrobial activities of nine Asteraceae species collected from Southern Vietnam. Antioxidant and antimicrobial activities were determined by standard protocols. Essential oils from Ageratum conyzoides, Helianthus annuus, and Artemisia vulgaris indicated significant inhibitory effects on Staphylococcus aureus and Candida spp. Crude extracts and fractions from Taraxacum officinale, Chrysanthemum morifolium, A. conyzoides, and Tagetes erecta showed inhibitory ability on at least one testing bacterial strains including S. aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In a study on clinical isolates, ethyl acetate fraction from A. conyzoides flower displayed the most potent effect on uropathogenic E. coli and K. pneumoniae with MIC at 1.25–10 mg/ml and 5–12.5 mg/ml, respectively. DPPH-scavenging assay indicated that T. erecta extract had the lowest IC50 (17.280 μg/ml) and is 2.4 times higher than vitamin C (7.321 μg/ml). This study revealed that A. conyzoides has good potential against uropathogenic E. coli and K. pneumoniae, and therefore could be applied for prophylactic treatment of urinary infection.


2013 ◽  
pp. 171-183 ◽  
Author(s):  
Emilija Ivanova ◽  
Natalija Atanasova-Pancevska ◽  
Dzoko Kungulovski

It is well known that essential oils possess significant antimicrobial activity. This study was conducted to estimate the antimicrobial activity of various types of Biokill, a laboratory produced solution composed of several essential oils (Biokill dissolved in 96% ethanol; Biokill 96% further dissolved in DMSO; Biokill dissolved in 70% ethanol and Biokill 70% further dissolved in DMSO). The antimicrobial activity was evaluated against five selected fungal strains, Candida albicans ATCC 10231, Saccharomyces cerevisiae ATCC 9763, Aspergillus niger I.N. 1110, Aspergillus sojae CCF and Penicillium spp. FNS FCC 266. A variation of the microtiter plate-based antimicrobial assay was used in order to assess the antimicrobial activity of the solutions. By applying this assay minimal inhibitory concentrations (MIC) of the Biokill solutions were determined for each strain of the selected test microorganisms. The results demonstrated that all variations of Biokill showed antimicrobial activity at concentrations lower than 2.5?g/mL. Biokill 70% further dissolved in DMSO showed the best antimicrobial properties against all the selected strains with MICs less than 1.25?g/mL. These results indicated that Biokill could find application in the pharmaceutical industry, in food preservation and conservation, in the prevention and treat?ment of plants infected by certain phytopathogens, etc.


Author(s):  
Roseline Eleojo Kwasi ◽  
Iyanuoluwa Gladys Aremu ◽  
Qudus Olamide Dosunmu ◽  
Funmilola A. Ayeni

Background: Ogi constitutes a rich source of lactic acid bacteria (LAB) with associated health benefits to humans through antimicrobial activities. However, the high viability of LAB in Ogi and its supernatant (Omidun) is essential. Aims: This study was carried out to assess the viability of LAB in various forms of modified and natural Ogi and the antimicrobial properties of Omidun against diarrhoeagenic E coli. Methods and Material: The viability of LAB was assessed in fermented Ogi slurry and Omidun for one month and also freeze-dried Ogi with and without added bacterial strains for two months. A further 10 days viability study of modified Omidun, refrigerated Omidun, and normal Ogi was performed. The antimicrobial effects of modified Omidun against five selected strains of diarrhoeagenic E. coli (DEC) were evaluated by the co-culture method. Results: Both drying methods significantly affected carotenoids and phenolic compounds. The Ogi slurry had viable LAB only for 10 days after which, there was a succession of fungi and yeast. Omidun showed 2 log10cfu/ml reduction of LAB count each week and the freeze-dried Ogi showed progressive reduction in viability. Refrigerated Omidun has little viable LAB, while higher viability was seen in modified Omidun (≥2 log cfu/ml) than normal Omidun. Modified Omidun intervention led to 2-4 log reduction in diarrhoeagenic E. coli strains and total inactivation of shigella-toxin producing E. coli H66D strain in co-culture. Conclusions: The consumption of Ogi should be within 10 days of milling using modified Omidun. There are practical potentials of consumption of Omidun in destroying E. coli strains implicated in diarrhea. Keywords: Ogi, Omidun, lactic acid bacteria, diarrhoeagenic Escherichia coli strains, Viability.


Sign in / Sign up

Export Citation Format

Share Document