scholarly journals Climatological water balance and climate classification of thornthwaite and mather for benin, west Africa, in 1970-2015 period

2021 ◽  
Vol 29 ◽  
pp. 291-302
Author(s):  
Vidéhouénou Ariane Lucrèce Todote ◽  
Gustavo Bastos Lyra ◽  
Marcel Carvalho Abreu

The climate is described by the predominant atmospheric conditions in a particular region and influences several human activities. In agriculture, water availability defines the growth and yield of crops and can be obtained by the water balance. The climate classification also aids to identify suitable areas for agricultural crops. Thus, the aim of this work was to elaborate the water balance and perform the climate classification through the method of Thornthwaite and Mather (1955) for six weather stations (Bohicon, Cotonou-Airport, Kandi-Airport, Natitingou, Parakou-Airport and Savè) located in Benin, Western Africa. For the execution of this work, monthly series of precipitation and potential evapotranspiration from 1970 to 2015 were used. Once the monthly water balance of the six seasons was elaborated, it was observed that the rainy (dry) period decreases (increases) from the coast (Cotonou-Airport) to the north of Benin (Kandi-Airport) and, coincides with Boreal summer and part of autumn (Boreal winter and part of spring). Regarding the climate classification, the Cotonou-Airport station was characterized as Subhumid Megathermal climate with moderate winter deficit (C2wA’a’); the stations of Bohicon and Savè presented similar climate classification with Subhumid Dry Megathermal climate with low or without water surplus (C1dA’a’); Natitingou with Subhumid Dry climate Megathermal with large summer surplus (C1s2A’a’); Parakou-Airport with Subhumid climate Dry Megathermic with moderate summer surplus (C1sA’a’) and, Kandi-Airport presented Semi-arid Megathermal climate with moderate summer surplus (DsA’a’). In Benin, subsistence and rainfed farming showed greater risk in the north of the country due to the decrease in the rainy season and the water surplus from the coast (south) to the north of the country, with the increase in aridity.

2019 ◽  
Vol 13 (26) ◽  
pp. 51-57
Author(s):  
Qusai Y. AL-Kubaisi

Mandali Basin is located between latitudes (33◦ 39' 00" and 33◦54' 55") to the north and longitudes (45ο 11' 00" and 45ο 40' 00") to theeast; to the east of Diyala province at the Iraqi-Iranian border; thebasin area is approximately 491 km2.From the study of climate reality of the basin between 1990-2013and assessment of the basic climate transactions, it was foundthat the annual rate of rainfall is 253.02 mm, the relative humidity(44.4%), the temperature (21.3 ◦C), wind speed (2.08 m /sec.),sunshine (8.27 h/day) and evaporation of the basin class (a) (271.98mm) and corrected potential evapotranspiration (80.03 mm). Theresults of the data analysis show that, there are three basic periods ofclimate variability wet period, semi wet and dry period.This study shows that, there is water surplus of 60.87% of therainfall amount which is equivalent to 154.03 mm, the amount ofrunoff is 7.47 mm, and the amount of water recharge is 146.56mm.


2014 ◽  
Vol 27 (17) ◽  
pp. 6423-6438 ◽  
Author(s):  
Jeffrey Shaman

Abstract An analysis and characterization of seasonal changes in the atmospheric teleconnection between ENSO and western European precipitation, as well as atmospheric conditions over the North Atlantic and Europe, are presented. Significant ENSO-associated changes in precipitation are evident during the boreal spring and fall seasons, marginal during boreal summer, and absent during boreal winter. The spring and fall precipitation anomalies are accompanied by statistically significant ENSO-related changes in large-scale fields over the North Atlantic and Europe. These seasonal teleconnections appear to be mediated by changes in upper tropospheric conditions along the coast of Europe that project down to the lower troposphere and produce onshore or offshore moisture flux anomalies, depending on the season. Some ENSO-related changes in storm activity are also evident during fall and winter. Analyses during boreal winter reveal little effect of coincident ENSO conditions on either European precipitation or upper tropospheric conditions over Europe.


2021 ◽  
Vol 144 (1-2) ◽  
pp. 363-377
Author(s):  
Jiangnan Li ◽  
Zhian Sun ◽  
Feng Zhang

AbstractThe autocorrelation function (ACF) and its finite Fourier transform, referred to as signal energy, have been investigated using the ECMWF daily surface temperature data. ACF itself provides a measure of the influence of leading fluctuation between two different time points. Considering the decay of ACF, it is found that the scaling power-rule of ACF is only valid in a very short period, as the decay of ACF exists before it reaches a random noise state. Therefore, the method of the critical exponent of ACF is limited in the short length of the temporal interval. On the other hand, the distributions of the signal energy always show nice patterns, indicating the degree of persistence change. It is found, for a short period, that the distributions of the signal energy and the critical exponent are very similar, with a correlation coefficient over 0.97. For a longer period, though the critical exponent of ACF becomes invalid, the signal energy can always provide an effective method to investigate climate persistence in different lengths of time. In a 5-day period of boreal winter, the southern part of North America has a larger value of signal energy compared to the northern part; thus, the surface temperature is more stable in the north part. The result becomes opposite in the boreal summer. The method of signal energy can also be applied to a particular interval of time. In different temporal intervals, the signal energy presents very different results, especially over the El Nino regions


2020 ◽  
Vol 2 (1) ◽  
pp. 84-89
Author(s):  
Hussein Ilaibi Zamil Al-Sudani ◽  

The hydrology section is divided into two main components, surface and groundwater. One of the most important outcomes in the water balance equation for any natural area or water body is Evapotranspiration and it is also a crucial component of the hydrologic cycle. Prediction of monthly evapotranspiration can be obtained depending on observed monthly average temperatures at a meteorological station in each year. Calculating of water balance in Iraq depending on meteorological data and Thornthwaite method was the aim of this research. Results of corrected potential evapotranspiration (PEc) obtained from applying Thornthwaite formula were compared with annual and monthly rainfall in thirty two meteorological station in order to estimate actual evapotranspiration (AE). The results showed that the annual summation of rainfall increased from south west towards north east according to the increasing ratio of rainfall due to the impact of Mediterranean climate condition on Iraq. Actual evapotranspiration depends directly on water excess during calculating water balance. Water surplus contour map indicates increased values towards north-east direction of Iraq, where water surplus depends directly on both rainfall and actual evapotranspiration.


2007 ◽  
Vol 20 (9) ◽  
pp. 1910-1922 ◽  
Author(s):  
Alberto M. Mestas-Nuñez ◽  
David B. Enfield ◽  
Chidong Zhang

Abstract The seasonal and interannual variability of moisture transports over the Intra-Americas Sea (including the Gulf of Mexico and the Caribbean Sea) is evaluated using the NCEP–NCAR global reanalysis. The seasonal variability of these moisture transports is consistent with previous studies and shows distinctive winter and summer regimes. Boreal winter moisture is mainly delivered to the central United States from the Pacific with some contribution from the Gulf of Mexico. It is during the boreal summer that the moisture flow over the Intra-Americas Sea is most effective in supplying the water vapor to the central United States via the northern branch of the Caribbean low-level jet. The increase of intensity of this jet during July is associated with an increase in evaporation over the Intra-Americas Sea, consistent with midsummer drought conditions over this region. During both summer and winter, the interannual variability of the inflow of moisture from the Intra-Americas Sea into central United States is associated with Caribbean low-level jet variability. The source of the varying moisture is mainly the Gulf of Mexico and the North Atlantic area just east of the Bahamas Islands and the sink is precipitation over east-central United States. The main teleconnection pattern for these interannual variations appears to be the Pacific–North American, although in boreal winter ENSO and possibly the North Atlantic Oscillation may also play a role. During boreal summer, associations with ENSO mainly involve the zonal moisture exchange between the Intra-Americas Sea/tropical Atlantic and the tropical Pacific.


2012 ◽  
Vol 43 (4) ◽  
pp. 460-475 ◽  
Author(s):  
Mathew Herrnegger ◽  
Hans-Peter Nachtnebel ◽  
Thomas Haiden

In this paper the third water balance component, the actual evapotranspiration (ETA), is analysed. Although evapotranspiration rates decrease with increasing altitude, it can be concluded that substantial quantitative differences are found among temperature and energy balance-based techniques for estimating the ETA. The objective of this study is to apply a distributed and continuous hydrological model and to utilise standard meteorological datasets with a high spatio-temporal resolution (1 km2 and 60 min) to estimate the evapotranspiration in high Alpine Austrian catchments. Compared with the Hargreaves and Thornthwaite methods the ASCE-Penman-Monteith approach yields substantially higher potential evapotranspiration (ETP) rates, with basin-values up to 24% higher compared with the temperature-based methods. The decrease of ETP with elevation ranges from 6 to 26 mm per 100 m. The ETA rates differ up to 15%, with a decrease of 18–28 mm per 100 m. About 30% of the annual precipitation is evaporated and this implies that even larger correction factors of precipitation are required to satisfy the runoff. The method is demonstrated in basins in the north central Austrian Alps.


2009 ◽  
Vol 22 (19) ◽  
pp. 5102-5114
Author(s):  
Shigenori Otsuka ◽  
Shigeo Yoden

Abstract The temporal–spatial distribution of thin moist layers in the midtroposphere over the tropical eastern Pacific is studied by data analyses of radiosonde soundings and downscaling numerical experiments with a regional model. Radiosonde soundings at San Cristóbal, Galápagos, show frequent existence of thin moist layers between 2 and 10 km in altitude, with a local minimum at 7–8 km. The downscaling experiments with global objective analyses are completed for 2005–06, September and December of 1999–2004, and March of 2000–04. The vertical distribution of thin moist layers has three local maxima at 5, 10, and 16 km, where bimodality of the frequency distribution of water vapor is evident. Between 4 and 7 km, an annual variation is dominant in the occurrence ratio of thin moist layers, which tend to appear in nonconvective regions. In boreal winter, the layers appear to the north of the intertropical convergence zone (ITCZ), whereas in boreal summer the layers appear in the equator-side of the ITCZ. Interannual variations of the appearance of thin moist layers are also studied in 1999–2006, based on the experiments for particular months (March, September, and December). The occurrence ratio is generally high in December and March and low in September. In La Niña years, the annual variation is smaller than that in El Niño years; the occurrence ratio is higher in boreal summer to the south of the ITCZ.


2019 ◽  
Vol 32 (14) ◽  
pp. 4525-4545 ◽  
Author(s):  
Haiyan Teng ◽  
Grant Branstator ◽  
Ahmed B. Tawfik ◽  
Patrick Callaghan

Abstract A series of idealized prescribed soil moisture experiments is performed with the atmosphere/land stand-alone configuration of the Community Earth System Model, version 1, in an effort to find sources of predictability for high-impact stationary wave anomalies observed in recent boreal summers. We arbitrarily prescribe soil water to have a zero value at selected domains in the continental United States and run 100-member ensembles to examine the monthly and seasonal mean response. Contrary to the lack of a substantial response in the boreal winter, the summertime circulation response is robust, consistent, and circumglobal. While the stationary wave response over the North America and North Atlantic sectors can be well explained by the reaction of a linear dynamical system to heating anomalies caused by the imposed dry land surface, nonlinear processes involving synoptic eddies play a crucial role in forming the remote response in Eurasia and the North Pacific Ocean. A number of other possible factors contributing to the circulation responses are also discussed. Overall, the experiments suggest that, in the boreal summer, soil moisture may contribute to the predictability of high-impact stationary wave events, which can impact regions that are great distances from these source regions.


Irriga ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 641-655
Author(s):  
Paulo André da Silva Martins ◽  
Carlos Alexandre Santos Querino ◽  
Marcos Antônio Lima Moura ◽  
Juliane Kayse Albuquerque da Silva Querino ◽  
Leia Beatriz Vieira Bentolila ◽  
...  

BALANÇO HÍDRICO CLIMATOLÓGICO E CLASSIFICAÇÃO CLIMÁTICA DE THORNTHWAITE E MATHER (1955) PARA O MUNICÍPIO DE MANICORÉ, NA MESORREGIÃO SUL DO AMAZONAS     PAULO ANDRÉ DA SILVA MARTINS1; CARLOS ALEXANDRE SANTOS QUERINO2; MARCOS ANTÔNIO LIMA MOURA3; JULIANE KAYSE ALBUQUERQUE DA SILVA QUERINO4; LÉIA BEATRIZ VIEIRA BENTOLILA5 E PAULA CAROLINE DOS SANTOS SILVA6   1Doutorando em Geografia pela Universidade Federal de Rondônia -UNIR, membro pesquisador do grupo de pesquisa Interação biosfera atmosfera na Amazônia – GPIBA, da Universidade Federal do Amazonas – UFAM e grupo de pesquisa geografia e planejamento ambiental - LABOGEOPA, da Universidade Federal de Rondônia – UNIR, Rua 29 de agosto s/n, centro, CEP: 69800-000, Humaitá, Amazonas, Brasil. E-mail: [email protected] 2Departamento de Hidro meteorologia e pós-graduação em Ciências Ambientais da Universidade Federal do Amazonas – UFAM.  Rua 29 de agosto s/n, centro, CEP: 69800-000, Humaitá, Amazonas, Brasil. E-mail: [email protected] 3Instituto de Ciências Atmosféricas Universidade Federal de Alagoas – ICAT/UFAL. Avenida Lourival Melo Mota, S/N Tabuleiro dos Martins, CEP: 57072-900 Maceió, Alagoas, Brasil. E-mail: [email protected] 4Departamento de Hidro meteorologia e pós-graduação em Ciências Ambientais da Universidade Federal do Amazonas – UFAM.  Rua 29 de agosto s/n, centro, CEP: 69800-000, Humaitá, Amazonas, Brasil. E-mail: [email protected] 5Engenheira Ambiental, membra do grupo de pesquisa Interação biosfera atmosfera na Amazônia – GPIBA, da Universidade Federal do Amazonas – UFAM. Rua 29 de agosto s/n, centro, CEP: 69800-000, Humaitá, Amazonas, Brasil. E-mail:[email protected] 6Mestra em Ciências Ambientais pela Universidade Federal do Amazonas – UFAM. Membra do grupo de pesquisa Interação biosfera atmosfera na Amazônia – GPIBA, da Universidade Federal do Amazonas – UFAM Rua 29 de agosto s/n, centro, CEP: 69800-000, Humaitá, Amazonas, Brasil. E-mail:[email protected]     1 RESUMO   O padrão climático é descrito pelas condições das variáveis meteorológicas que exercem influência nas atividades humanas. Por sua vez, a agricultura é condicionada pela disponibilidade hídrica que pode ser conhecida através do balanço hídrico. Objetivou-se analisar a precipitação e a temperatura do ar, bem como realizar o balanço hídrico climatológico e a classificação climática em Manicoré-AM. Os dados foram coletados a partir da estação meteorológica do Instituto Nacional de Meteorologia entre os anos de 2010 a 2018. A evapotranspiração potencial foi calculada pelo modelo de Thornthwaite (1948). O balanço hídrico e a classificação climática foram estimados pela metodologia de Thornthwaite e Mather (1955). Os resultados foram analisados através de estatística descritiva. A precipitação média anual foi de 2.946,20 mm dos quais 90% ocorreram no período chuvoso. A temperatura do ar (Tar) média anual variou entre 25 e 27 °C. A deficiência hídrica anual média foi de 267,91 mm entre maio e setembro. O excedente hídrico médio anual foi de 1.609,26 mm entre dezembro e abril. A evapotranspiração potencial média anual foi de 1.604,85 mm, com máxima em agosto e mínima em julho. Por fim, a Classificação climática foi AwA’a’, clima super úmido megatérmico com moderada deficiência hídrica no inverno.   Palavras-Chaves: Precipitação, Temperatura do ar, Padrão climático.   MARTINS, P. A. da S.; QUERINO, C. A. S.; MOURA, MARCOS A. L.; QUERINO, J. K. A. da S.; BENTOLILA, L. B. V.; SILVA, P. C. dos S. CLIMATIC WATER BALANCE AND THORNTHWAITE AND MATHER (1955) CLIMATE CLASSIFICATION FOR MANICORÉ MUNICIPALITY IN AMAZONAS SOUTH MESOREGION     2 ABSTRACT   Climate pattern can be described by the conditions of the meteorological variables that exert influence on human activities. Agriculture, in its turn, is conditioned by water availability, which can be known through water balance. This paper aimed to analyze precipitation and air temperature, as well as to perform the climatic water balance and climatic classification in the municipality of Manicoré (Amazonas State, Brazil). Data were collected from the meteorological station of the National Institute of Meteorology from 2010 through 2018. Potential evapotranspiration was calculated by the Thornthwaite model (Thornthwaite, 1948). Water balance and climatic classification were estimated by Thornthwaite and Mather (1955) methodology. The results were analyzed with descriptive statistics. The mean annual precipitation was 2.946.20 mm, of which 90% occurred in the rainy season. The average annual air temperature ranged from 25 to 27 ° C. The mean annual water deficit was 267.91 mm from May through September. The average annual water surplus was 1,609.26 mm from December through April. The annual average potential evapotranspiration was 1,604.85 mm, with maximum in August and minimum in July. Finally, the climatic classification was AwA'a ', super humid megathermal climate with moderate water deficiency in winter.   Keywords: Precipitation, Air temperature, Southern Amazonas.


2011 ◽  
Vol 139 (8) ◽  
pp. 2421-2438 ◽  
Author(s):  
Ruiqiang Ding ◽  
Jianping Li ◽  
Kyong-Hwan Seo

AbstractTropical intraseasonal variability (TISV) shows two dominant modes: the boreal winter Madden–Julian oscillation (MJO) and the boreal summer intraseasonal oscillation (BSISO). The two modes differ in intensity, frequency, and movement, thereby presumably indicating different predictabilities. This paper investigates differences in the predictability limits of the BSISO and the boreal winter MJO based on observational data. The results show that the potential predictability limit of the BSISO obtained from bandpass-filtered (30–80 days) outgoing longwave radiation (OLR), 850-hPa winds, and 200-hPa velocity potential is close to 5 weeks, comparable to that of the boreal winter MJO. Despite the similarity between the potential predictability limits of the BSISO and MJO, the spatial distribution of the potential predictability limit of the TISV during summer is very different from that during winter. During summer, the limit is relatively low over regions where the TISV is most active, whereas it is relatively high over the North Pacific, North Atlantic, southern Africa, and South America. The spatial distribution of the limit during winter is approximately the opposite of that during summer. For strong phases of ISO convection, the initial error of the BSISO shows a more rapid growth than that of the MJO. The error growth is rapid when the BSISO and MJO enter the decaying phase (when ISO signals are weak), whereas it is slow when convection anomalies of the BSISO and MJO are located in upstream regions (when ISO signals are strong).


Sign in / Sign up

Export Citation Format

Share Document