scholarly journals Combined Effect of Low and High Rate of Corrugated Steel Fiber and Stirrups on Mechanical Performance of SFSCC Beams

2021 ◽  
Vol 10 (1) ◽  
pp. 37-51
Author(s):  
Sihem Chaib ◽  
Rachid Lassoued

In order to improve the fragile nature of concrete, and its low tensile strength, and with a view to giving it the desired properties, which serve to build more durable structures at less cost, the association of a self-consolidating concrete with fiber, is considered a wise combination.  However, given the limited amount of research on the response of SFSCC structures, designers and engineers do not use this material with confidence. In the present work, an experimental companion was conducted, in the interest of examining, the combined effect of fibers and stirrups include low and high rate of steel fiber, on the behavior of SFSCC beams. This choice allowed working on economically viable SFSCC. Beams were made also with ordinary concrete and others with self-consolidating. Thirty-six beams were of identical cross-section 10x20cm and length of 120cm; carried out with or without longitudinal and transverse reinforcement. Before proceeding with the main part of the research program, the concrete mixtures were characterized first in the fresh state by the following tests: Slump Flow, Time Flow T500; J-Ring, L-Box, V-Funnel and Sieve stability, and then in the hardened state: compressive and tensile strengths. In the light of the results obtained, it was found that adding steel fibers to fresh self-consolidating concrete decreased its workability and fluidity, but improved its hardening properties. Subsequently, the addition of the steel fibers increased the flexural capacity of the beams significantly, and improved their ductility. Also, an addition of the steel fibers in an adequate percentage, in this case at 0.9%, made it possible to replace the shear reinforcements, and can lead to changing the mode of failure from a collapse by brittle shear, to a mechanism of ruin in ductile bending.

2011 ◽  
Vol 374-377 ◽  
pp. 1619-1622
Author(s):  
Ling Zhang ◽  
Zhi Qiang Shi

In this article, based on a certain actual project, the main physical and mechanical performance including compressive strength, splitting strength, flexural strength and shear strength are studied in detail through the experiments. Different fiber types and volume ratio are chosen in the experiments for the purpose of determining the best quantities and types of steel fiber in concrete to lengthen the service life of deck pavements. It is showed that the research has some referential value for similar projects.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yihong Wang ◽  
Jiawei Chen ◽  
Danying Gao ◽  
E. Huang

Crumb rubber concrete (CRC) is an environment-friendly material using crumb rubber as a composition of cement concrete. It provides an alternative method for recycling of waste tires scientifically. CRC exhibits numerous advantages compared to ordinary concrete. However, the application of CRC is limited due to its low compressive and tensile strengths. This paper puts forward a new modified method by adding steel fibers and nanosilica in CRC. Material properties’ testing of eighteen concrete mixtures was investigated, considering different strength grades of CRC and crumb rubber contents. In addition, four different steel fiber contents (0%, 0.5%, 1.0%, and 1.5%) and three different nanosilica content (0%, 1%, and 2%) were taken into consideration. The brittle failure of the CRC can be improved and the mechanical properties can be enhanced according to the test results. More importantly, the modified CRC with 1.0% steel fiber content has relatively high compressive and splitting tensile strengths. Furthermore, the noncompactness of CRC can be effectively improved by nanosilica, enhancing the efficiency of steel fibers simultaneously. Finally, the failure mechanism of the modified CRC is discussed in this paper.


2015 ◽  
Vol 650 ◽  
pp. 91-104 ◽  
Author(s):  
Nasr Eddine Bouhamou ◽  
Fouzia Mostefa ◽  
Abdelkader Mebrouki

Every year, millions of cube meters are dredged from dams and restraints as an entertaining and prevention procedure all over the world. These dredged sediments are considered as natural waste leading to an environmental, ecological and even an economical problem in their processing and deposing.Nevertheless, in the context of the sustainable development policy, a way of management is opened aiming to the valorization of sediments as a building material and particularly as a new binder that can be industrially exploited and that improve the physical, chemical and mechanical characteristics of the concrete.This study is a part of the research works realized in the civil engineering department at the university of Mostaganem (Algeria), on the impact of the dredged mud of Fergoug dam on the behaviour of self-consolidating concrete in fresh and hardened state , such as the mechanical performance of SCC and its impact on the differed deformations (shrinkage). The work aims to valorize this mud in SCC and to show eventual interactions between constituents. The results obtained presents a good perspectives in order to perform SCC based in caclined mud.


2020 ◽  
Vol 14 (54) ◽  
pp. 116-127
Author(s):  
Jalal Akbari ◽  
Amirhossein Abed

This paper experimentally investigates the effect of steel and glass fibers on the engineering properties of concrete. To achieve this, 0.3%, 0.6%, and 0.9% by volume fraction of steel and glass fibers are added in concrete mixtures with water-to-cement (W/C) ratios 0.35 and 0.45. For each ratio of water to cement, 21 cubic samples for compressive strength tests, 14 cylindrical samples for tension strength tests, and also 14 prismatic samples for three-point flexural strength tests were prepared. The experimental results show that adding 0.3% to 0.9% % steel fibers for concrete increases simultaneously the compressive, tension, and also flexural strengths in comparison with plain concrete. Adding glass fibers only between 0.3% to 0.6% increases the compressive strength. The results reveal that the best range for reinforcing concrete with steel fiber is 0.3% to 0.9 % and glass fiber is 0.3% to 0.6 % by volume fraction of fiber to improve the engineering strengths concrete. As a rule of thumb, the tension and flexural strengths of concrete could be explained as 8% and 13% of the compressive strength, respectively.


2014 ◽  
Vol 21 (4) ◽  
pp. 597-605 ◽  
Author(s):  
Peng Zhang ◽  
Ya-nan Zhao ◽  
Chen-hui Liu ◽  
Peng Wang ◽  
Tian-hang Zhang

AbstractThis paper presents an experimental study to evaluate the combined effect of nano-SiO2 particles and steel fibers on flexural properties of concrete composites containing fly ash. In this study, five different nano-SiO2 contents (1%, 3%, 5%, 7%, and 9%) and five different steel fiber contents (0.5%, 1%, 1.5%, 2%, and 2.5%) were used. The results indicate that addition of nano-SiO2 and steel fibers decreases the workability of the concrete composites containing fly ash, and both the slump and slump flow decrease gradually with the increase in nano-SiO2 and steel fiber content. Besides, the addition of nano-SiO2 can greatly increase the flexural strength and flexural modulus of elasticity of concrete composites containing fly ash. There is a tendency for the increase in the flexural strength flexural modulus of elasticity with an increase in the nano-SiO2 content when the nano-SiO2 content is below 5%, while both of the two flexural parameters begin to decrease after the nano-SiO2 content above 5%. Furthermore, steel fibers have great improvement on the flexural properties of concrete composites containing fly ash and nano-particles. The flexural strength and flexural modulus of elasticity of concrete composites containing fly ash and nano-SiO2 are more than those of the concrete composite without steel fibers. Both of the two flexural parameters increase with the increase in steel fiber content when the steel fiber content is below 2%, while the flexural parameters begin to decrease after the steel fiber content is above 2%.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 985
Author(s):  
Ghafur H. Ahmed ◽  
Hawreen Ahmed ◽  
Babar Ali ◽  
Rayed Alyousef

High-performance self-consolidating concrete is one of the most promising developments in the construction industry. Nowadays, concrete designers and ready-mix companies are seeking optimum concrete in terms of environmental impact, cost, mechanical performance, as well as fresh-state properties. This can be achieved by considering the mentioned parameters simultaneously; typically, by integrating conventional concrete systems with different types of high-performance waste mineral admixtures (i.e., micro-silica and fly ash) and ultra-high range plasticizers. In this study, fresh-state properties (slump, flow, restricted flow), hardened-state properties (density, water absorption by immersion, compressive strength, splitting tensile strength, flexural strength, stress-strain relationship, modulus of elasticity, oven heating test, fire-resistance, and freeze-thaw cycles), and cost of high-performance self-consolidating concrete (HPSCC) prepared with waste mineral admixtures, were examined and compared with three different reference mixes, including normal strength-vibrated concrete (NSVC), high-strength self-compacted concrete (HSSCC), and high-performance highly-viscous concrete (HPVC). Then, a multi parameter analytical approach was considered to identify the optimum concrete mix in terms of cost, workability, strength, and durability.


2021 ◽  
pp. 002199832199943
Author(s):  
Beatriz C Xavier ◽  
Amauri E Gomes ◽  
Mirian LNM Melo ◽  
Rosa C Cecche Lintz ◽  
Luísa A Gachet ◽  
...  

In this investigation distinctive self-compacting concretes (SCC) containing both marble + granite (MG) powder and hooked-end steel fibers (HESF) are investigated. A mixture of conventional SCC (reference), and other five samples containing MG and steel fiber (SF) contents are provided, i.e. 20MG, 20SF, 30MG + 10SF, 20SF and 30MG + 20 SF. Both the fresh and hardened properties of the modified self-compacting concretes are evaluated. Workability of the SCC samples represented by slump flow, L-box, V-funnel, J-ring and flowability T500 is examined. The properties of hardened state of the SCC samples at 7 and 28 days are also evaluated. Modulus of elasticity, water absortion, voids index (indicatig porosity), and specific mass are attained. Comparisons among specific strengths and consumptions of cement per compressive strengths are also provided. The SCC/30MG/10SF sample has a specific strength ∼50% higher than the conventional SCC sample. When a ratio involving porosity per cement consumption per tensile strength is evaluated, the SCC/30MG/10SF sample has this ratio ∼80% higher than the SCC reference. Additionally, the best result of consumption of cement (CC) per compressive strength (CS) (1.28x lower than the SCC reference) at 28 days is that of the SCC/30MG/10SF sample (5.03 kg/m3. MPa−1). This indicates that an environmentally friendly aspect associated with low relative cost, which is an important parameter to consider in future SCC mixture designing.


2019 ◽  
Vol 31 (1) ◽  
pp. 127-136 ◽  
Author(s):  
Erman Demircilioglu ◽  
Egemen Teomete ◽  
Osman E Ozbulut

Self-sensing cementitious composites can enable structures that are capable of carrying the loads applied on them while monitoring their condition. Most of earlier research has focused on the incorporation of nanofillers or microfibers into cement paste or mortar composites. However, there have been very limited number of studies on the development of steel-fiber-reinforced cementitious composites with self-sensing capabilities. This study explores strain sensitivity of concrete mixtures that include coarse aggregates up to 15 mm diameter and steel fibers with a length of 13 mm and a diameter of 0.25 mm. Five different concrete mixtures with steel fibers at 0%, 0.2%, 0.35%, 0.5%, and 0.8% volume ratios were fabricated. Compression tests with simultaneous measurement of strain and electrical resistance were conducted on the cubic specimens. Gauge factor and percent linearity that is a measure of error in strain sensing were calculated. Concrete mixtures with 0.5% steel fibers possess a strong linear relationship between applied strain and electrical resistance change with a gauge factor over 20 times larger than that of traditional metal strain gauges. Phenomenological models for different resistivity and gauge factors of cement paste/mortar with respect to concrete with large aggregates and short–long fiber cement composites were presented.


Sign in / Sign up

Export Citation Format

Share Document