scholarly journals Antibacterial activity of Actinomycetes symbiont with seaweeds: a prosperous agent of animal antibacterial

2016 ◽  
Vol 1 (2) ◽  
Author(s):  
Bertoka Fajar S.P. Negara ◽  
. Riyanti ◽  
Bintang Marhaeni ◽  
Aradea B. Kusuma

Circulation of synthetic antibacterial chemicals which is used continuously can cause resistance to bacteria. Alternative synthetic antibiotics research then comes up as an urgent need. Recently, the discovery of new antibacterial agents is looking for Actinomycetes. Actinomycetes are one of the active marine bacteria which produce secondary metabolites that could be used as antibacterial. The objective of this study was to evaluate the antibacterial activities of Actinomycetes symbiont with Halimeda macroloba, Gelidiella acerosa, and Turbinaria ornata in Pangandaran beach, Indonesia. A total of 41 Actinomycetes were isolated from 3 species of seaweed. Rep PCR amplification method was used to characterize and identify the relationship between samples. Primer BOX A1R (5’-CTACGGCAAGGCGACGCTGACGCTGACG-3’), 27F (5'-AGTTTGATCMTGGCTCAG-3') and 1492R (5'-TACGGYTACCTTGTTACGACTT-3') was used in amplification 16s DNA. Six isolates from the representative cluster dendogram were selected for secondary metabolites extraction using ethyl acetate solvent, meanwhile agar diffusion method was used as Antibacterial activity assay using E. coli, Proteus sp., and Enterobacter sp. as the bacterial test. The results showed that the activity of secondary metabolite extracts of Actinomycetes symbiont with Halimeda macroloba presented the highest inhibition zone on 3 bacterial tests. In the future, it could be a potential antibacterial agent against animal pathogenic bacteria.

Molekul ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. 101 ◽  
Author(s):  
Dian Riana Ningsih ◽  
Zusfahair Zusfahair ◽  
Dwi Kartika

Treatment of bacterial infectious diseases using semi-synthetic antibiotics can lead to resistance, so as to overcome it necessary to search for natural ingredients from plant extracts that has potential as an antibacterial, one of which is the leaf extract of soursop (Annona muricata L.). This study aims to determine the antibacterial activity of soursop leaf against E. coli and identify groups most active chemical compounds from the extracts. Soursop leaves extracted by maceration using n-hexane, chloroform and methanol. The extracts were tested for antibacterial activity using the diffusion method. Extract with the highest activity determined the minimum inhibitory concentrations grow (MIC) and tested the content of secondary metabolites with phytochemical test, subsequently identified using IR spectrophotometer. Soursop leaves with extraction solvent n-hexane, chloroform and methanol to produce n-hexane extract (E1), the chloroform extract (E2), and the methanol extract (E3) with a yield respectively 0.82%; 5.21%; 8.2% and produce antibacterial activity with consecutive inhibition zone of 3.52 mm; 8.34 mm; 3.00 mm. MIC of soursop leaf chloroform extract of the E. coli bacteria that is at a concentration of 1 ppm with inhibition zone of 3.23 mm. Based on the test results phytochemical soursop leaf chloroform extract showed the presence of compounds alkaloids, steroids, saponins and tannins. IR spectrophotometer identification results showed that the chloroform extract of the leaves of the soursop has functional groups OH, aliphatic C-H, C = O, C = C aromatic, CH3, C-O ether and C-H outside the field.


2021 ◽  
Vol 5 (1) ◽  
pp. 436-444
Author(s):  
Sabiu Shitu ◽  
M. Attahiru ◽  
F. A. Iliya

The antibacterial activity of Tokar sha; a local traditional medication widely used by many people in North-west zone of Nigeria especially Sokoto, Kebbi and Zamfara against enteric infections were examined against some clinical isolates of pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Bacillus cereus and Salmonella typhi) using agar well diffusion method. The pattern of inhibition varied with the tokar sha concentrations and the organisms tested. The tokar sha was more effective on E. coli with a maximum zone of growth inhibition of 25mm at 35mg/ml followed by B. cereus (20mm). However, S. aureus and S. typhi were resistant to tokar sha at all concentrations tested. The minimum inhibitory concentrations (MIC) were found to be 35mg/ml for both E. coli and B. cereus. The antibacterial activities exhibited by tokar sha in this study could be attributed to the presence of its constituents which signifies the potential of the tokar sha as a therapeutic agent. These findings may justify the ethnomedicinal use of tokar sha as an antibacterial agent against enterobacteria


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Martin Muthee Gakuubi ◽  
John M. Wagacha ◽  
Saifuddin F. Dossaji ◽  
Wycliffe Wanzala

The objective of this study was to determine the chemical composition and antibacterial activity of essential oils (EOs) ofTagetes minutaagainst three phytopathogenic bacteriaPseudomonas savastanoipv.phaseolicola,Xanthomonas axonopodispv.phaseoli, andXanthomonas axonopodispv.manihotis. The essential oils were extracted using steam distillation method in a modified Clevenger-type apparatus while antibacterial activity of the EOs was evaluated by disc diffusion method. Gas chromatography coupled to mass spectrometry (GC/MS) was used for analysis of the chemical profile of the EOs. Twenty compounds corresponding to 96% of the total essential oils were identified with 70% and 30% of the identified components being monoterpenes and sesquiterpenes, respectively. The essential oils ofT. minutarevealed promising antibacterial activities against the test pathogens withPseudomonas savastanoipv.phaseolicolabeing the most susceptible with mean inhibition zone diameters of 41.83 and 44.83 mm after 24 and 48 hours, respectively.The minimum inhibitory concentrations and minimum bactericidal concentrations of the EOs on the test bacteria were in the ranges of 24–48 mg/mL and 95–190 mg/mL, respectively. These findings provide a scientific basis for the use ofT. minutaessential oils as a botanical pesticide for management of phytopathogenic bacteria.


2020 ◽  
Vol 4 (1) ◽  
pp. 56-63
Author(s):  
I Ketut Budaraga ◽  
Dian Pramana Putra ◽  
Wellyalina Wellyalina

The layer cake is one of the traditional cakes that are very popular with the community. The addition of Moringa leafs is expected to extend the period of storage and the components of the nutrition can be increased. Moringa leaves indicate to contain an antibacterial compound that is the result of secondary metabolites. This compound consists of alkaloids, tannins, flavonoids, terpenoids, saponins, and others. The purpose of this study was to determine the antibacterial properties of Moringa leaves added to layer cake against pathogenic bacteria S. aureus and E. coli. Research has been implemented on April - May 2019. The testing of antibacterial activity by using well method. The results showed that the layer cake with the addition of 4% Moringa leaves indicated the high inhibition zone on the bacteria E. coli by 10.7 mm and S. aureus by 9.7 mm when compared with the addition of 1%, 2%, and 3 % Moringa leaves. The result of bacterial pathogens that were tested in Moringa leaves showed that the bacteria E. Coli had resistance to more robust compared with S. Aureus. This is indicated by the inhibition zone of E. coli that is greater than S. aureus bacteria.


Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


2020 ◽  
Vol 8 (2) ◽  
pp. 61
Author(s):  
Tessalonica Dajoh ◽  
Robert A Bara ◽  
Esther Angkouw ◽  
Medy Ompi ◽  
Rosita A Lintang ◽  
...  

Phyllidiella nigra is an organism that is suspected to have secondary metabolites because their ability to develop its self defense system by camouflage and using chemical compounds derived from their nature diet as deterrent against their predators. The purpose of this study was to isolate symbiotic bacterial derived from P. nigra, extracted and followed by, the antibacterial assays against Escherichia coli and Bacillus megaterium as well as the anti-UV assay. The results showed that the five isolates tested had an antibacterial activity with the highest average inhibition zone against E. coli DSM 498 bacteria, isolate 1 (14.67 mm), isolate 5 (14 mm), and against B. Megaterium DSM 32T bacteria, isolate 3 (13.33 mm). The three isolates which had the highest inhibition zone and P. nigra extract were tested for anti-UV assay using a UV-Vis Spectrophotometer. The results obtained isolate 3 has absorption of UV-A with the UV absorbtion maximum at λ 340 nm and P. nigra extract has absorption on UV-B radiation with UV absorption maximum at λ 290 nm. Key words: Nudibranchia, Bacteria, Anti-bacteial, Anti-UV Phyllidiella nigra merupakan organisme yang diduga memiliki metabolit sekunder karena mampu mengembangkan sistem pertahanan dirinya dengan cara kamuflase dan menggunakan senyawa kimia sebagai racun yang didapat dari makanannya. Tujuan dari penelitian ini yaitu mendapatkan isolat bakteri yang bersimbiosis dengan P. nigra, mendapatkan ekstrak dari baktri simbion, dan menguji antibakteri dan anti-UV ekstrak etil aseta bakteri simbion dengan metode difusi agar terhadap bakteri Escherichia coli dan Bacillus megaterium. Hasil penelitian didapatkan kelima isolat yang diuji memiliki aktivitas antibakteri dengan rerata zona hambat tertinggi terhadap bakteri E. coli DSM 498 yaitu isolat 1 (14,67 mm), isolat 5 (14 mm), dan terhadap baktri B. megaterium DSM 32T yaitu isolat 3 (13,33 mm). Ketiga isolat yang memiliki zona hambat tertinggi dan ekstrak P. nigra diujikan anti-UV menggunakan alat UV-Vis Spektrofotometer. Hasil yang didapat isolat 3 memiliki serapan terhadap radiasi sinar UV-A dengan puncak tertinggi pada λ 340 nm dan ekstrak P. nigra memiliki serapan terhadap radiasi sinar UV-B dengan puncak tertinggi berada pada λ 290 nm. Kata kunci: Nudibranchia, Bacteria, Anti-bacteial, Anti-UV


2018 ◽  
Vol 3 (3) ◽  
pp. 85
Author(s):  
Novi Permata Sari ◽  
Rafika Sari ◽  
Eka Kartika Untari

Bacteriocin is a secondary metabolite product of lactic acid bacteria (LAB) which have an antimicrobial and potentially as a natural preservative. LAB isolates used in this study were Lactobacillus brevis, Lactobacillus casei and Lactobacillus plantarum. This study aimed to determine the antibacterial activity of bacteriocin produced by each isolate of LAB including the influence of pH and heating variation against Bacillus cereus, Bacillus subtilis and Staphylococcus epidermidis. Antibacterial activity test was done by using disc diffusion method. method. Confirmation test using proteolytic enzyme aimed to analyse that the inhibition zone produced from the activity of bacteriocin. The inhibition zone produced from L. brevis, L. casei and L. plantarum against B. cereus were 15.70, 16.43 and 14.50 mm, against B. subtilis were 13.37, 14.10 and 12.53 mm and against S. epidermidis were 11.37, 14.50 and 12.45 mm. The activity of each bacteriocin decreased with the addition of trypsin and catalase, bacteriocin was active in the pH range of 2-10 and heating temperature of 40-121oC. Statistical test showed that the addition of trypsin, catalase and the variation of pH also heating had significant differences (p<0.05) to antibacterial activity produced by bacteriocin from L. brevis, L. casei and L. plantarum. 


EKOLOGIA ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 31-39
Author(s):  
Oom Komala ◽  
. Ismanto ◽  
Muhammad Alan Maulana

Streptococcus pyogenes is one of the pathogenic bacteria that causes pharyngitis. Natural treatment to overcome these problems is to use cardamom seeds. The purpose of this study was to test the antibacterial activity, determine the concentration of inhibitory zone and phytochemical compounds from  ethanol 96% extract of Java cardamom seeds (Amomum compactum Soland. Ex Maton) against Streptococcus pyogenes. The method is used   solid dilution and paper disc diffusion method. The solid dilution method is used for the Minimum Inhibitory Concentration (MIC) test with a concentration of 1.25%, 2.5%, 5% and 7.5% while the paper diffusion method is used for the Inhibition zone Diameter (IZD)  using five treatments namely three concentrations of ethanol 96% extract of Java cardamom seeds (7.5%, 10% and 12%), one positive control of amoxicillin 0.01 mg/mL and one negative control of sterile distilled water. IZD data were  analyzed using ANOVA with a confidence level of 95% and α = 0.05 and Duncan's further tests to determine differences between treatments. The results showed that the MIC  was at a concentration of 7.5% while for the IZD test which had the highest activity there was a concentration of 12% with an average inhibition diameter of 12.03 ± 0.14 mm. In addition, ethanol 96% extract of Java cardamom seeds contain alkaloids, flavonoids, terpenoids and tannins which function in antibacterial activity.


2019 ◽  
Vol 2019 ◽  
pp. 1-4
Author(s):  
Yohannes Kelifa Emiru ◽  
Ebrahim Abdela Siraj ◽  
Tekleab Teka Teklehaimanot ◽  
Gedefaw Getnet Amare

Objective. To evaluate the antibacterial effects of the leaf latex of Aloe weloensis against infectious bacterial strains. Methods. The leaf latex of A. weloensis at different concentrations (400, 500, and 600 mg/ml) was evaluated for antibacterial activities using the disc diffusion method against some Gram-negative species such as Escherichia coli (ATCC 14700) and Pseudomonas aeruginosa (ATCC 35619) and Gram-positive such as Staphylococcus aureus (ATCC 50080) and Enterococcus fecalis (ATCC 4623). Results. The tested concentrations of the latex ranging between 400 and 600 mg·mL−1 showed significant antibacterial activity against bacterial strain. The highest dose (600 mg/ml) of A. weloensis leaf latex revealed the maximum activity (25.93 ± 0.066 inhibition zone) followed by the dose 500 mg/ml against S. aureus. The lowest antibacterial activity was observed by the concentration 400 mg/ml (5.03 ± 0.03) against E. coli. Conclusion. The results of the present investigation suggest that the leaf latex of A. weloensis can be used as potential leads to discover new drugs to control some bacterial infections.


2017 ◽  
Vol 901 ◽  
pp. 124-132
Author(s):  
Artania Adnin Tri Suma ◽  
Tutik Dwi Wahyuningsih ◽  
Deni Pranowo

Some novel N-phenylpyrazolines were synthesized and investigated for their antibacterial activitiy. Chalcones 2-4 which were prepared from acetophenone and veratraldehyde derivatives were reacted with phenylhydrazine to give N-phenylpyrazolines 5-7. All of the synthesized compounds were characterized using FTIR, GC-MS, and NMR spectrometers. Further, antibacterial activity of N-phenylpyrazolines were evaluated by agar well-diffusion method against Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Escherichia coli, and Shigella flexneri. The highest activity (highest inhibition zone) of compound 5 was 2.6 mm (at 1000 ppm) against B. subtillis, compound 6 was 7.25 mm (at 1000 ppm) against S. aureus, and compound 7 was 6.75 mm (at 500 ppm) against S. aureus. The results indicated that compound 6 and 7 exhibited promising antibacterial activity.


Sign in / Sign up

Export Citation Format

Share Document