scholarly journals The HDACi Panobinostat Shows Growth Inhibition Both In Vitro and in a Bioluminescent Orthotopic Surgical Xenograft Model of Ovarian Cancer

PLoS ONE ◽  
2016 ◽  
Vol 11 (6) ◽  
pp. e0158208 ◽  
Author(s):  
Øystein Helland ◽  
Mihaela Popa ◽  
Katharina Bischof ◽  
Bjørn Tore Gjertsen ◽  
Emmet McCormack ◽  
...  
Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 672 ◽  
Author(s):  
Roberta Affatato ◽  
Laura Carrassa ◽  
Rosaria Chilà ◽  
Monica Lupi ◽  
Valentina Restelli ◽  
...  

Mucinous epithelial ovarian cancer (mEOC) is a rare subset of epithelial ovarian cancer. When diagnosed at a late stage, its prognosis is very poor, as it is quite chemo-resistant. To find new therapeutic options for mEOC, we performed high-throughput screening using a siRNA library directed against human protein kinases in a mEOC cell line, and polo-like kinase1 (PLK1) was identified as the kinase whose downregulation interfered with cell proliferation. Both PLK1 siRNA and two specific PLK1 inhibitors (onvansertib and volasertib) were able to inhibit cell growth, induce apoptosis and block cells in the G2/M phase of the cell cycle. We evaluated, in vitro, the combinations of PLK1 inhibitors and different chemotherapeutic drugs currently used in the treatment of mEOC, and we observed a synergistic effect of PLK1 inhibitors and antimitotic drugs. When translated into an in vivo xenograft model, the combination of onvansertib and paclitaxel resulted in stronger tumor regressions and in a longer mice survival than the single treatments. These effects were associated with a higher induction of mitotic block and induction of apoptosis, similarly to what was observed in vitro. These data suggest that the combination onvansertib/paclitaxel could represent a new active therapeutic option in mEOC.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hanna Piotrowska-Kempisty ◽  
Marcin Ruciński ◽  
Sylwia Borys ◽  
Małgorzata Kucińska ◽  
Mariusz Kaczmarek ◽  
...  

2015 ◽  
Vol 33 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Justyna Mikuła-Pietrasik ◽  
Patrycja Sosińska ◽  
Eryk Naumowicz ◽  
Konstantin Maksin ◽  
Hanna Piotrowska ◽  
...  

2014 ◽  
Vol 355 (2) ◽  
pp. 310-315 ◽  
Author(s):  
Justyna Mikuła-Pietrasik ◽  
Patrycja Sosińska ◽  
Małgorzata Kucińska ◽  
Marek Murias ◽  
Konstantin Maksin ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A226-A226
Author(s):  
Stephen Santoro ◽  
Aaron Cooper ◽  
Natalie Bezman ◽  
Jun Feng ◽  
Kanika Chawla ◽  
...  

BackgroundIn solid tumors, CAR T cell efficacy is limited by off-tumor toxicity and suppression by the tumor microenvironment (TME). AB-X is an integrated circuit T cell (ICT cell) intended for the treatment of ovarian cancer. AB-X includes a transgene cassette with two functional modules: 1) an ”AND” logic gate designed to limit off-tumor toxicity through dual tumor antigen recognition; 2) a dual shRNA-miR to resist TME suppression and improve ICT cell function. The AB-X logic gate consists of a priming receptor that induces expression of an anti-mesothelin (MSLN) CAR upon engagement of a ALPG/P (alkaline phosphatase germ-line/placental). The dual shRNA-miR mediates downregulation of FAS and PTPN2. The AB-X DNA cassette is inserted into the T cell genome at a defined novel genomic site via CRISPR-based gene editing.MethodsDual-antigen specificity of the logic gate was assessed in mice harboring MSLN+ and ALPG/P+MSLN+ K562 tumors established on contralateral flanks. Potency was measured in a subcutaneous MSTO xenograft model. Logic-gated ICT cells were compared with MSLN CAR T cells in both models. In vitro, expansion of ICT cells with the FAS/PTPN2 shRNA-miR was evaluated in a 14 day repetitive stimulation assay (RSA). In vivo, expansion and potency were measured in the MSTO xenograft model. An in vitro FAS cross-linking assay was conducted to assess the impact of FAS knockdown on FAS-mediated apoptosis.ResultsLogic-gated ICT cells demonstrated specific activity against ALPG/P+MSLN+ tumors, but had no effect against MSLN+ tumors in the K562 in vivo specificity model. In addition, logic-gated ICT cells demonstrated greater in vivo potency than MSLN CAR T cells in the MSTO xenograft model. In our RSA, ICT cells containing the FAS/PTPN2 shRNA-miR had 8-fold greater expansion than the MSLN CAR T cells. Enhanced expansion was confirmed in vivo with ICT cells demonstrating >10-fold expansion in tumors and peripheral blood, enabling comparable growth inhibition in MSTO xenografts at less than one quarter the dose of the MSLN CAR T cells. Importantly, PTPN2 knockdown resulted in balanced expansion of all T cell subsets, including CD45RA+, CCR7+ memory cells. Lastly, ICT cells containing the FAS/PTPN2 shRNA-miR were resistant to FAS-mediated apoptosis.ConclusionsAB-X ICT cells specifically recognize ALPG/P+MSLN+ tumors, demonstrate superior potency, expansion, and persistence compared with MSLN CAR T cells, and are resistant to ovarian TME suppression. AB-X will be evaluated in clinical trials for treatment of platinum resistant/refractory ovarian cancer.AcknowledgementsWe would like to acknowledge all of our colleagues at Arsenal Biosciences, without whom this work would not have been possible.


2021 ◽  
Vol 11 ◽  
Author(s):  
Cyndia Charfi ◽  
Michel Demeule ◽  
Jean-Christophe Currie ◽  
Alain Larocque ◽  
Alain Zgheib ◽  
...  

Vasculogenic mimicry (VM) is defined as the formation of microvascular channels by genetically deregulated cancer cells and is often associated with high tumor grade and cancer therapy resistance. This microcirculation system, independent of endothelial cells, provides oxygen and nutrients to tumors, and contributes also in part to metastasis. VM has been observed in ovarian cancer and in triple negative breast cancer (TNBC) and shown to correlate with decreased overall cancer patient survival. Thus, strategies designed to inhibit VM may improve cancer patient treatments. In this study, sortilin (SORT1) receptor was detected in in vitro 3D capillary-like structures formed by ES-2 ovarian cancer and MDA-MB-231 TNBC-derived cells when grown on Matrigel. SORT1 gene silencing or antibodies directed against its extracellular domain inhibited capillary-like structure formation. In vitro, VM also correlated with increased gene expression of matrix metalloproteinase-9 (MMP-9) and of the cancer stem cell marker CD133. In vivo ES-2 xenograft model showed PAS+/CD31- VM structures (staining positive for both SORT1 and CD133). TH1904, a Doxorubicin-peptide conjugate that is internalized by SORT1, significantly decreased in vitro VM at low nM concentrations. In contrast, VM was unaffected by unconjugated Doxorubicin or Doxil (liposomal Doxorubicin) up to μM concentrations. TH1902, a Docetaxel-peptide conjugate, altered even more efficiently in vitro VM at pM concentrations. Overall, current data evidence for the first time that 1) SORT1 itself exerts a crucial role in both ES-2 and MDA-MB-231 VM, and that 2) VM in these cancer cell models can be efficiently inhibited by the peptide-drug conjugates TH1902/TH1904. These new findings also indicate that both peptide-drug conjugates, in addition to their reported cytotoxicity, could possibly inhibit VM in SORT1-positive TNBC and ovarian cancer patients.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5424
Author(s):  
Ewelina Piktel ◽  
Ilona Oscilowska ◽  
Łukasz Suprewicz ◽  
Joanna Depciuch ◽  
Natalia Marcińczyk ◽  
...  

Gold nanoparticles-assisted delivery of antineoplastics into cancerous cells is presented as an effective approach for overcoming the limitations of systemic chemotherapy. Although ceragenins show great potential as anti-cancer agents, in some tumors, effective inhibition of cancer cells proliferation requires application of ceragenins at doses within their hemolytic range. For the purpose of toxicity/efficiency ratio control, peanut-shaped gold nanoparticles (AuP NPs) were functionalized with a shell of ceragenin CSA-131 and the cytotoxicity of AuP@CSA-131 against ovarian cancer SKOV-3 cells and were then analyzed. In vivo efficiency of intravenously and intratumorally administered CSA-131 and AuP@CSA-131 was examined using a xenograft ovarian cancer model. Serum parameters were estimated using ELISA methods. Comparative analysis revealed that AuP@CSA-131 exerted stronger anti-cancer effects than free ceragenin, which was determined by enhanced ability to induce caspase-dependent apoptosis and autophagy processes via reactive oxygen species (ROS)-mediated pathways. In an animal study, AuP@CSA-131 was characterized by delayed clearance and prolonged blood circulation when compared with free ceragenin, as well as enhanced anti-tumor efficiency, particularly when applied intratumorally. Administration of CSA-131 and AuP@CSA-131 prevented the inflammatory response associated with cancer development. These results present the possibility of employing non-spherical gold nanoparticles as an effective nanoplatform for the delivery of antineoplastics for the treatment of ovarian malignancy.


2021 ◽  
Author(s):  
Wei Zhu ◽  
Xiangming Xiao ◽  
Jinqin Chen

Abstract Background: To date, long intergenic nonprotein coding RNA 1132 (LINC01132) expression in epithelial ovarian cancer (EOC) and the underlying mechanisms have not been explored. In this study, we measured LINC01132 expression in EOC and assessed the effects of LINC01132 on the malignant behaviours of EOC cells in vitro and in vivo. Additionally, mechanistic studies were performed to elucidate the molecular events that occurred downstream of LINC01132 in EOC cells. Methods: Reverse-transcription quantitative PCR (RT-qPCR) was utilized to verify LINC01132 expression in EOC. The effects of LINC01132 on the malignant behaviours of EOC cells were determined using a Cell Counting Kit-8 assay, flow cytometry analysis, cell migration and invasion assays and a tumour xenograft model. The targeting interaction among LINC01132, microRNA-431-5p (miR-431-5p) and SRY-Box 9 (SOX9) was verified by RNA immunoprecipitation and luciferase reporter assays. Results: LINC01132 was overexpressed in EOC and was obviously associated with poor patient prognosis. Functionally, cell experiments revealed that LINC01132 depletion could inhibit EOC cell proliferation, migration and invasion and promote cell apoptosis in vitro. Additionally, loss of LINC01132 attenuated tumour growth in vivo. Mechanistically, LINC01132 acted as a competing endogenous RNA by sequestering miR-431-5p and thereby increasing SOX9 expression in EOC cells, forming a LINC01132/miR-431-5p/SOX9 axis. In rescue experiments, miR-431-5p inhibition or SOX9 re-expression eliminated the inhibitory effects of LINC01132 silencing on the pathological behaviours of EOC cells. Conclusions: Generally, LINC01132 exhibited oncogenic activities in EOC cells in vitro and in vivo by regulating the outcome of the miR-431-5p/SOX9 axis, providing an effective target for EOC diagnosis, therapy and prognosis evaluation.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 21132-21132 ◽  
Author(s):  
M. Tejeda ◽  
D. Gaál ◽  
I. Szűcs ◽  
A. Telekes

21132 Background: An in vitro study demonstrated that Avemar increased the effect of Tamoxifen on MCF7 (ER+) mammary carcinoma cells. Methods: MXT (ER+) mouse mammary tumor tissue was transplanted s.c. into BDF1 mice. The tumor bearing animals were treated p.o. with Avemar. Then the most effective Avemar dose (3.0 g/kg), Tamoxifen (0.5 mg/kg s.c.), Examestane (10 mg/kg i.p.) and Anastrasol (5 mg/kg i.p.) monotherapies and their combinations with Avemar was compared. All treatments were given once daily, for 10 days, starting 7 days after the tumor transplantation. The same experimental schedule was repeated using T47/D (ER+) human breast carcinoma cell lines transplanted into C.B-17/Icr-scid/scid mouse. Finally, the growth of T47/D and MDA-MB-231 (ER-) xenografts treated by Avemar was compared. Tumor volume was measured up to 25 days after transplantation in MXT and 55 days in xenograft. Results: In MXT model all monotherapies and combinations led to retardation of tumor growth. Combination of Avemar with any of the endocrine treatment enhanced the efficacy compared to endocrine monotherapy. Out of the four monotherapies the best result was achieved by Avemar (50% inhibition). The combination of Avemar with Examestane increased the tumor growth inhibition to 60.4% compared to control. The other treatments did not exceed the effect of Avemar monotherapy. In xenograft model Avemar produced 50% tumor growth inhibition compared to control and was more effective than the other treatments Examestane (26%), Anastrasol (25%) or Tamoxifen (42%). Combined treatment with Avemar always improved efficacy within the range of 3–10%. Avemar showed similar efficacy when T47/D (49%) and MDA-MB-231 (52%) xenografts were compared. Conclusions: The tumor growth inhibitory effect of Avemar on ER positive MXT mouse breast carcinoma as well as in T47/D xenograft models are comparable (equal or better) to standard endocrine treatments. Avemar certainly did not reduce the effect of endocrine treatments. The antitumor activity of Avemar did not depend on the estrogen receptor status. No significant financial relationships to disclose.


2012 ◽  
Vol 19 (4) ◽  
pp. 527-539 ◽  
Author(s):  
Barbara Mariniello ◽  
Antonio Rosato ◽  
Gaia Zuccolotto ◽  
Beatrice Rubin ◽  
Maria Verena Cicala ◽  
...  

Treatment options are insufficient in patients with adrenocortical carcinoma (ACC). Based on the efficacy of sorafenib, a tyrosine kinase inhibitor, and everolimus, an inhibitor of the mammalian target of rapamycin in tumors of different histotype, we aimed at testing these drugs in adrenocortical cancer models. The expression of vascular endothelial growth factor and its receptors (VEGFR1–2) was studied in 18 ACCs, 33 aldosterone-producing adenomas, 12 cortisol-producing adenomas, and six normal adrenal cortex by real-time PCR and immunohistochemistry and by immunoblotting in SW13 and H295R cancer cell lines. The effects of sorafenib and everolimus, alone or in combination, were tested on primary adrenocortical cultures and SW13 and H295R cells by evaluating cell viability and apoptosis in vitro and tumor growth inhibition of tumor cell line xenografts in immunodeficient mice in vivo. VEGF and VEGFR1–2 were detected in all samples and appeared over-expressed in two-thirds of ACC specimens. Dose-dependent inhibition of cell viability was observed particularly in SW13 cells after 24 h treatment with either drug; drug combination produced markedly synergistic growth inhibition. Increasing apoptosis was observed in tumor cells treated with the drugs, particularly with sorafenib. Finally, a significant mass reduction and increased survival were observed in SW13 xenograft model undergoing treatment with the drugs in combination. Our data suggest that an autocrine VEGF loop may exist within ACC. Furthermore, a combination of molecularly targeted agents may have both antiangiogenic and direct antitumor effects and thus could represent a new therapeutic tool for the treatment of ACC.


Sign in / Sign up

Export Citation Format

Share Document