scholarly journals Chronic IL-1 exposure drives LNCaP cells to evolve androgen and AR independence

PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242970
Author(s):  
Haley C. Dahl ◽  
Mohammed Kanchwala ◽  
Shayna E. Thomas-Jardin ◽  
Amrit Sandhu ◽  
Preethi Kanumuri ◽  
...  

Chronic inflammation promotes prostate cancer (PCa) initiation and progression. We previously reported that acute intereluekin-1 (IL-1) exposure represses androgen receptor (AR) accumulation and activity, providing a possible mechanism for IL-1-mediated development of androgen- and AR-independent PCa. Given that acute inflammation is quickly resolved, and chronic inflammation is, instead, co-opted by cancer cells to promote tumorigenicity, we set out to determine if chronic IL-1 exposure leads to similar repression of AR and AR activity observed for acute IL-1 exposure and to determine if chronic IL-1 exposure selects for androgen- and AR-independent PCa cells. We generated isogenic sublines from LNCaP cells chronically exposed to IL-1α or IL-1β. Cells were treated with IL-1α, IL-1β, TNFα or HS-5 bone marrow stromal cells conditioned medium to assess cell viability in the presence of cytotoxic inflammatory cytokines. Cell viability was also assessed following serum starvation, AR siRNA silencing and enzalutamide treatment. Finally, RNA sequencing was performed for the IL-1 sublines. MTT, RT-qPCR and western blot analysis show that the sublines evolved resistance to inflammation-induced cytotoxicity and intracellular signaling and evolved reduced sensitivity to siRNA-mediated loss of AR, serum deprivation and enzalutamide. Differential gene expression reveals that canonical AR signaling is aberrant in the IL-1 sublines, where the cells show constitutive PSA repression and basally high KLK2 and NKX3.1 mRNA levels and bioinformatics analysis predicts that pro-survival and pro-tumorigenic pathways are activated in the sublines. Our data provide evidence that chronic IL-1 exposure promotes PCa cell androgen and AR independence and, thus, supports CRPCa development.

2020 ◽  
Author(s):  
H.C. Dahl ◽  
M. Kanchwala ◽  
S.E. Thomas-Jardin ◽  
A. Sandhu ◽  
P. Kanumuri ◽  
...  

AbstractChronic inflammation promotes prostate cancer (PCa) initiation and progression. We previously reported that acute intereluekin-1 (IL-1) exposure represses androgen receptor (AR) accumulation and activity, providing a possible mechanism for IL-1-mediated development of androgen- and AR-independent PCa. Given that acute inflammation is quickly resolved, and chronic inflammation is, instead, co-opted by cancer cells to promote tumorigenicity, we set out to determine if chronic IL-1 exposure leads to similar repression of AR and AR activity observed for acute IL-1 exposure and to determine if chronic IL-1 exposure selects for androgen- and AR- independent PCa cells. We generated isogenic sublines from LNCaP cells chronically exposed to IL-1α or IL-1β. Cells were treated with IL-1α, IL-1β, TNFα or HS-5 bone marrow stromal cells conditioned medium to assess cell viability in the presence of cytotoxic inflammatory cytokines. Cell viability was also assessed following serum starvation, AR siRNA silencing and enzalutamide treatment. Finally, RNA sequencing was performed for the IL-1 sublines. MTT, RT-qPCR and western blot analysis show that the sublines evolved resistance to inflammation- induced cytotoxicity and intracellular signaling and evolved reduced sensitivity to siRNA- mediated loss of AR, serum deprivation and enzalutamide. Differential gene expression reveals that canonical AR signaling is aberrant in the IL-1 sublines, where the cells show constitutive PSA repression and basally high KLK2 and NKX3.1 mRNA levels and bioinformatics analysis predicts that pro-survival and pro-tumorigenic pathways are activated in the sublines. Our data provide evidence that chronic IL-1 exposure promotes PCa cell androgen and AR independence and, thus, supports CRPCa development.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2020 ◽  
Vol 20 ◽  
Author(s):  
Karam Hossein Hasanvand ◽  
Mojtaba Khaksarian ◽  
Maryam Alipour ◽  
Hormoz Mahmoudvand ◽  
Massumeh Naizi ◽  
...  

Introduction: The present study deals with the effect of Nectaroscordum koelzi fruit extract on acute and chronic inflammation. Methods: Totally, 84 NMRI mice were used in this study. The extract effect on acute inflammation was analyzed by increasing vascular permeability via acetic acid and xylene induced ear edema among mice. The extract was evaluated in terms of effects on chronic inflammation by means of the cotton pellet test among mice. For the assessment of inflammation degree, the mice paw edema volume was measured by the plethysmometric test. Results: The findings showed that the extract was effective on acute inflammation induced by acetic acid in mice. In the xylene ear edema, N. koelzi extract indicated the significant activity in mice. In the cotton pellet method, the methanol extract produced a significant reduction in comparison with the control and dexamethasone. Mice paw edema volume decreased with the extract. Conclusion: In general, the data from the experiments indicated that the methanol extract of N. koelzi has an anti-inflammatory effect on acute and chronic inflammation. However, the exact contributing mechanisms have not been investigated for the pharmacological effects.


2019 ◽  
Vol 18 (4) ◽  
pp. 334-341 ◽  
Author(s):  
Kun Fu ◽  
Liqiang Chen ◽  
Lifeng Miao ◽  
Yan Guo ◽  
Wei Zhang ◽  
...  

Background/Objective: Grape seed proanthocyanidins (GSPs) are a group of polyphenolic bioflavonoids, which possess a variety of biological functions and pharmacological properties. We studied the neuroprotective effects of GSP against oxygen-glucose deprivation/reoxygenation (OGD/R) injury and the potential mechanisms in mouse neuroblastoma N2a cells. Methods: OGD/R was conducted in N2a cells. Cell viability was evaluated by CCK-8 and LDH release assay. Apoptosis was assessed by TUNEL staining and flow cytometry. Protein levels of cleaved caspase-3, Bax and Bcl-2 were detected by Western blotting. CHOP, GRP78 and caspase-12 mRNA levels were assessed by real-time PCR. JC-1 dying was used to detect mitochondrial membrane potential. ROS levels, activities of endogenous antioxidant enzymes and ATP production were examined to evaluate mitochondrial function. Results: GSP increased cell viability after OGD/R injury in a dose-dependent manner. Furthermore, GSP inhibited cell apoptosis, reduced the mRNA levels of CHOP, GRP78 and caspase-12 (ER stressassociated genes), restored mitochondrial membrane potential and ATP generation, improved activities of endogenous anti-oxidant ability (T-AOC, GXH-Px, and SOD), and decreased ROS level. Conclusion: Our findings suggest that GSP can protect N2a cells from OGD/R insult. The mechanism of anti-apoptotic effects of GSP may involve attenuating ER stress and mitochondrial dysfunction.


2021 ◽  
Vol 11 (8) ◽  
pp. 3309
Author(s):  
Kosuke Sako ◽  
Daisuke Sakai ◽  
Yoshihiko Nakamura ◽  
Erika Matsushita ◽  
Jordy Schol ◽  
...  

After the discovery of functionally superior Tie2-positive nucleus pulposus (NP) progenitor cells, new methods were needed to enable mass culture and cryopreservation to maintain these cells in an undifferentiated state with high cell yield. We used six types of EZSPHERE® dishes, which support spheroid-forming colony culture, and examined NP cell spheroid-formation ability, number, proliferation, and mRNA expression of ACAN, COL1A2, COL2A1, and ANGPT1. Six different types of cryopreservation solutions were examined for potential use in clinical cryopreservation by comparing the effects of exposure time during cryopreservation on cell viability, Tie2-positivity, and cell proliferation rates. The spheroid formation rate was 45.1% and the cell proliferation rate was 7.75 times using EZSPHERE® dishes. The mRNA levels for COL2A1 and ANGPT1 were also high. In cryopreservation, CryoStor10 (CS10) produced ≥90% cell viability and a high proliferation rate after thawing. CS10 had a high Tie2-positive rate of 12.6% after culturing for 5 days after thawing. These results suggest that EZSPHERE enabled colony formation in cell culture without the use of hydrogel products and that CS10 is the best cryopreservation medium for retaining the NP progenitor cell phenotype and viability. Together, these data provide useful information of NP cell-based therapeutics to the clinic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maryam Pourhajibagher ◽  
Abbas Bahador

AbstractThis study aimed to focus on the simultaneous use of antimicrobial photodynamic therapy (aPDT) and sonodynamic antimicrobial chemotherapy (SACT), which is called photo-sonodynamic antimicrobial chemotherapy (PSACT) to attenuate the virulence of Aggregatibacter actinomycetemcomitans. Following the synthesis of Curcumin-decorated nanophytosomes (Cur-NPhs) as a novel photo-sonosensitizer, its particle size, polydispersity, ζ-potential surface morphology, physical stability, drug release, and entrapment efficiency were determined. In the Cur-NPhs-PSACT, the antimicrobial activities of Cur-NPhs against A. actinomycetemcomitans were investigated using cell viability, biofilm killing/degradation, metabolic activity, expression of quorum-sensing-associated qseB and qseC genes, and biofilm-associated rcpA gene under blue laser irradiation plus ultrasonic waves. Characterization tests showed the presence of a sphere-shaped vesicle and the self-closed structure of Cur-NPhs, resulting in a high drug-loading content and encapsulation efficiency. However, the antimicrobial effect of Cur-NPhs-PSACT was dose-dependent, PSACT using the high concentrations of Cur-NPhs (50 × 10–4 g/L) showed significant reductions (P < 0.05) in cell viability (13.6 log10 CFU/mL), biofilm killing/degradation (65%), metabolic activity (89.6%,), and mRNA levels of virulence determinant genes (qseB; 9.8-fold, qseC; 10.2-fold, and recA; 10.2-fold). This study concludes that the Cur-NPhs-PSACT had antimicrobial activities against A. actinomycetemcomitans by downregulating the expression of virulence genes, and may attenuate this bacterium that decreases periodontal disease severity in patients.


Metabolites ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 280
Author(s):  
Laila Naif Al-Harbi ◽  
Pandurangan Subash-Babu ◽  
Manal Abdulaziz Binobead ◽  
Maha Hussain Alhussain ◽  
Sahar Abdulaziz AlSedairy ◽  
...  

Controlled production of cyclin dependent kinases (CDK) and stabilization of tumor suppressor genes are the most important factors involved in preventing carcinogenesis. The present study aimed to explore the cyclin dependent apoptotic effect of nymphayol on breast cancer MCF-7 cells. In our previous study, we isolated the crystal from a chloroform extract of Nymphaea stellata flower petals and it was confirmed as nymphayol (17-(hexan-2-yl)-10,13-dimethylhexadecahydro-1H-cyclopenta[a]phenanthren-3-ol) using x-ray diffraction (XRD), Fourier transform infrared (FTIR), and mass spectroscopy (MS) methods. The cytotoxic effect of nymphayol on MCF-7 cells were analyzed using the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The cellular and nuclear damage was determined using propidium iodide (PI) and acridine orange/ethidium bromide (AO/ErBr) staining. Tumor suppressor and apoptosis related mRNA transcript levels were determined using real-time polymerase chain reaction (RT-PCR). Nymphayol potentially inhibits MCF-7 cell viability up to 78%, and the IC50 value was observed as 2.8 µM in 24 h and 1.4 µM in 48 h. Treatment with nymphayol significantly increased reactive oxygen species (ROS) level and the tunnel assay confirmed DNA damage. We found characteristically 76% apoptotic cells and 9% necrotic cells in PI and AO/ErBr staining after 48 h treatment with 2.8 µM of nymphayol. Gene expression analysis confirmed significantly (p ≤ 0.001) increased mRNA levels of cyclin dependent kinase inhibitor 2A (Cdkn2a), retinoblastoma protein 2 (pRb2), p53, nuclear factor erythroid 2-factor 2 (Nrf2), caspase-3, and decreased B-cell lymphoma 2 (Bcl-2), murine double minute 2 (mdm2), and proliferating cell nuclear antigen (PCNA) expression after 48 h. Nymphayol effectively inhibited breast cancer cell viability, and is associated with early expression of Cdkn2a, pRb2, and activation of p53 and caspases.


2019 ◽  
Author(s):  
Zhuyin Jia ◽  
Yiwei Huang ◽  
Xiaojun Ji ◽  
Jiaju Sun ◽  
Guosheng Fu

Abstract Background: Inflammatory cytokines are involved in acute coronary syndrome (ACS),and NF-kB is the central regulator of inflammation. Moreover, ticagrelor and clopidogrelcan prevent thrombotic events and improve the care of patients with ACS. Thus, we speculated that ticagrelor and clopidogrel relieve ACS by regulating NF-kB pathway. Methods: After human umbilical vein endothelial cells (HUVECs) were cultured with ticagrelor or clopidogrel and given lipopolysaccharide (LPS) and CD14, the mRNA levels of related inflammatory factors, the protein level changes of molecules in the NF-kB pathway, and the changes in cell viability, apoptosis and the cell cycle, cell migration, vascular formation and other vital activities were detected using quantitative Polymerase chain reaction (qPCR), Western blotting and immunofluorescence assay, CCK8, flow cytometry, transwell assay, matrigel, respectively. All data was expressed as the mean ± S.D. The statistical significance of data was assessedby an unpaired two-tailed t-test. Results: Ticagrelor and clopidogrel can suppress the NF-kB pathway by inhibiting the phosphorylation and entry into the nucleus of p65, restraining the degradation of IKBa, improving cell viability, restoring the cell cycle, cell migration and angiogenic ability, and inhibiting apoptosis. Conclusions: Ticagrelor and clopidogrel alleviate cellular dysfunction through suppressing NF-kB signaling to treat acute coronary syndrome.


2008 ◽  
Vol 7 (1) ◽  
pp. 19
Author(s):  
Indrya Kirana Mattulada

Tooth pain can be overcame by analgetics oraly or topically applied in the toothcavity. One of the topical analgetic is latex of J. Curcas. The purpose of this study wasto evaluate the anti inflammation effect of the latex of J. Curcas under histopathologicobservation. Twenty two teeth of M. Nemestrina were prepared until perforation,then applied the lyophilized latex of J. Curcas into the cavity and covered bytemporary filling.Eugenol was used as comparison. Evaluation was carried out after3, 6 and 24 hours. Monkeys were euthanized and the teeth were extracted. Antiinflammation effect was evaluated under histopathology observation. The result of thisstudy show red blood cells and acute inflammation were found under 3 and 6 hoursobservation, while odontoblastvacuolization cells and lysis of the blood vessels. Theconclusion was chronic inflammation occured might explain pulp pain relieved due tothe the chronic condition followed


2021 ◽  
Vol 22 (23) ◽  
pp. 12827
Author(s):  
Mahshid Ghasemi ◽  
Tyron Turnbull ◽  
Sonia Sebastian ◽  
Ivan Kempson

The MTT assay for cellular metabolic activity is almost ubiquitous to studies of cell toxicity; however, it is commonly applied and interpreted erroneously. We investigated the applicability and limitations of the MTT assay in representing treatment toxicity, cell viability, and metabolic activity. We evaluated the effect of potential confounding variables on the MTT assay measurements on a prostate cancer cell line (PC-3) including cell seeding number, MTT concentration, MTT incubation time, serum starvation, cell culture media composition, released intracellular contents (cell lysate and secretome), and extrusion of formazan to the extracellular space. We also assessed the confounding effect of polyethylene glycol (PEG)-coated gold nanoparticles (Au-NPs) as a tested treatment in PC-3 cells on the assay measurements. We additionally evaluated the applicability of microscopic image cytometry as a tool for measuring intracellular MTT reduction at the single-cell level. Our findings show that the assay measurements are a result of a complicated process dependant on many of the above-mentioned factors, and therefore, optimization of the assay and rational interpretation of the data is necessary to prevent misleading conclusions on variables such as cell viability, treatment toxicity, and/or cell metabolism. We conclude, with recommendations on how to apply the assay and a perspective on where the utility of the assay is a powerful tool, but likewise where it has limitations.


Sign in / Sign up

Export Citation Format

Share Document