scholarly journals Comparative proteomics analysis reveals the molecular mechanism of enhanced cold tolerance through ROS scavenging in winter rapeseed (Brassica napus L.)

PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0243292
Author(s):  
Wenbo Mi ◽  
Zigang Liu ◽  
Jiaojiao Jin ◽  
Xiaoyun Dong ◽  
Chunmei Xu ◽  
...  

Two winter rapeseed cultivars, “NS” (cold tolerant) and “NF” (cold sensitive), were used to reveal the morphological, physiological, and proteomic characteristics in leaves of plants after treatment at -4°C for 12 h(T1) and 24 h(T2), and at room temperature(T0), to understand the molecular mechanisms of cold tolerance. Antioxidant activity and osmotic adjustment ability were higher, and plasma membrane injury was less obvious, in NS than in NF under cold stress. We detected different abundant proteins (DAPs) related to cold tolerance in winter rapeseed through data-independent acquisition (DIA). Compared with NF, A total of 1,235 and 1,543 DAPs were identified in the NSs under T1 and T2, respectively. Compared with NF, 911 proteins were more abundant in NS only after cold treatment. Some of these proteins were related to ROS scavenging through four metabolic pathways: lysine degradation; phenylalanine, tyrosine, and tryptophan; flavonoid biosynthesis; and ubiquinone and other terpenoid-quinone biosynthesis. Analysis of these proteins in the four candidate pathways revealed that they were rapidly accumulated to quickly enhance ROS scavenging and improve the cold tolerance of NS. These proteins were noticeably more abundant during the early stage of cold stress, which was critical for avoiding ROS damage.

2020 ◽  
Author(s):  
Wen Song ◽  
Fengxian Tang ◽  
Wenchao Cai ◽  
Qin Zhang ◽  
Fake Zhou ◽  
...  

Abstract Background: During the low temperature storage, cantaloupe is susceptible to the cold stress, resulting in the loss of edible and commercial quality. To ascertain the molecular mechanisms of cold tolerance in cantaloupe, cold-sensitive cultivar Goldqueen-308 (GE) and cold-tolerant cultivar Jiashi-310 (JS) were used for quantitative proteomic analysis with iTRAQ in parallel. Results: In this work, two commercial cultivars were treated at 0.5℃ for 0, 12 and 24 days. Phenotypes assays showed that GE suffered a more severe damage as the cold treatment time extended. Proteomic analysis revealed that the number of differentially expressed proteins (DEPs) changed significantly over time in cold-exposed cantaloupe. Comparing with GE, JS responded in a prompter manner in terms of expressing cold-responding proteins during the similarly cold treatment. Furthermore, much more different groups of proteins were mobilized in response to the cold treatment in JS comparing with GE. Metabolic analysis indicated that more amino acids were up-regulated in JS during the early phases of cold stress. This study also identified some DEPs since they were up-regulated in JS or down-regulated in GE in terms of molecular mechanisms, which were mainly related to carbohydrate and energy metabolism, structure proteins, ROS scavening, amino acid metabolic and signaling transduction. Moreover, iTRAQ analysis was confirmed to be reliable via the results of phenotypes assays, metabolic analysis and q-PCR validation. Conclusion: By proteomics information,we found that the prompt response and the significant mobilization of proteins in JS maintained a higher level of cold tolerance, and the delay of cold response in GE could be a critical reason for the severe chilling injury. The candidate proteins we found will be the basis of future studies for further investigations and our findings may help to better understand the novel mechanisms of cold tolerance in cantaloupe.


AoB Plants ◽  
2019 ◽  
Vol 11 (6) ◽  
Author(s):  
Xiaoyan Cai ◽  
Richard Odongo Magwanga ◽  
Yanchao Xu ◽  
Zhongli Zhou ◽  
Xingxing Wang ◽  
...  

Abstract Low temperature is one of the key environmental stresses that impair plant growth and significantly restricts the productivity and spatial distribution of crop plants. Gossypium thurberi, a wild diploid cotton species, has adapted to a wide range of temperatures and exhibits a better tolerance to chilling stress. Here, we compared phenotypes and physiochemical changes in G. thurberi under cold stress and found this species indeed showed better cold tolerance. Therefore, to understand the molecular mechanisms of the cold tolerance in G. thurberi, we compared transcription changes in leaves of G. thurberi under cold stress by high-throughput transcriptome sequencing. In total, 35 617 unigenes were identified in the whole-genome transcription profile, and 4226 differentially expressed genes (DEGs) were discovered in the leaves upon cold treatment. Gene Ontology (GO) classification analyses showed that the majority of DEGs belonged to categories of signal transduction, transcription factors (TFs) and carbohydrate transport and metabolism. The expression of several cold-responsive genes such as ICE1, CBF4, RAP2-7 and abscisic acid (ABA) biosynthesis genes involved in different signalling pathways were induced after G. thurberi seedlings were exposed to cold stress. Furthermore, cold sensitivity was increased in CBF4 and ICE2 virus-induced gene silencing (VIGS) plants, and high level of malondialdehyde (MDA) showed that the CBF4 and ICE2 silenced plants were under oxidative stress compared to their wild types, which relatively had higher levels of antioxidant enzyme activity, as evident by high levels of proline and superoxide dismutase (SOD) content. In conclusion, our findings reveal a new regulatory network of cold stress response in G. thurberi and broaden our understanding of the cold tolerance mechanism in cotton, which might accelerate functional genomics studies and genetic improvement for cold stress tolerance in cultivated cotton.


2020 ◽  
Author(s):  
Wen Song ◽  
Fengxian Tang ◽  
Wenchao Cai ◽  
Qin Zhang ◽  
Fake Zhou ◽  
...  

Abstract Background: During the low temperature storage, cantaloupe is susceptible to the cold stress, resulting in the loss of edible and commercial quality. To ascertain the molecular mechanisms of cold tolerance in cantaloupe, cold-sensitive cultivar Goldqueen-308 (GE) and cold-tolerant cultivar Jiashi-310 (JS) were used for quantitative proteomic analysis with iTRAQ in parallel. Results: In this work, two commercial cultivars were treated at 0.5℃ for 0, 12 and 24 days. Phenotypes assays showed that GE suffered a more severe damage as the cold treatment time extended. Proteomic analysis revealed that the number of differentially expressed proteins (DEPs) changed significantly over time in cold-exposed cantaloupe. Comparing with GE, JS responded in a prompter manner in terms of expressing cold-responding proteins during the similarly cold treatment. Furthermore, much more different groups of proteins were mobilized in response to the cold treatment in JS comparing with GE. Metabolic analysis indicated that more amino acids were up-regulated in JS during the early phases of cold stress. This study also identified some DEPs since they were up-regulated in JS or down-regulated in GE in terms of molecular mechanisms, which were mainly related to carbohydrate and energy metabolism, structure proteins, ROS scavening, amino acid metabolic and signaling transduction. Moreover, iTRAQ analysis was confirmed to be reliable via the results of phenotypes assays, metabolic analysis and q-PCR validation. Conclusion: By proteomics information,we found that the prompt response and the significant mobilization of proteins in JS maintained a higher level of cold tolerance, and the delay of cold response in GE could be a critical reason for the severe chilling injury. The candidate proteins we found will be the basis of future studies for further investigations and our findings may help to better understand the novel mechanisms of cold tolerance in cantaloupe.


2021 ◽  
Author(s):  
Zemin Wang ◽  
Darren Chern Jan Wong ◽  
Yi Wang ◽  
Guangzhao Xu ◽  
Chong Ren ◽  
...  

Abstract Cultivated grapevine (Vitis) is a highly valued horticultural crop, and cold stress affects its growth and productivity. Wild Amur grape (Vitis amurensis) PAT1 (Phytochrome A signal transduction 1, VaPAT1) is induced by low temperature, and ectopic expression of VaPAT1 enhances cold tolerance in Arabidopsis (Arabidopsis thaliana). However, little is known about the molecular mechanism of VaPAT1 during the cold stress response in grapevine. Here, we confirmed the overexpression of VaPAT1 in transformed grape calli enhanced cold tolerance. Yeast two-hybrid and bimolecular fluorescence complementation assays highlighted an interaction between VaPAT1 with INDETERMINATE-DOMAIN 3 (VaIDD3). A role of VaIDD3 in cold tolerance was also indicated. Transcriptome analysis revealed VaPAT1 and VaIDD3 overexpression and cold treatment coordinately modulate the expression of stress-related genes including lipoxygenase 3 (LOX3), a gene encoding a key jasmonate biosynthesis enzyme. Co-expression network analysis indicated LOX3 might be a downstream target of VaPAT1. Both electrophoretic mobility shift and dual luciferase reporter assays showed the VaPAT1-IDD3 complex binds to the IDD-box (AGACAAA) in the VaLOX3 promoter to activate its expression. Overexpression of both VaPAT1 and VaIDD3 increased the transcription of VaLOX3 and JA levels in transgenic grape calli. Conversely, VaPAT1-SRDX (dominant repression) and CRISPR/Cas9-mediated mutagenesis of PAT1-ED causing the loss of the C-terminus in grape calli dramatically prohibited the accumulation of VaLOX3 and JA levels during cold treatment. Together, these findings point to a pivotal role of VaPAT1 in the cold stress response in grape by regulating JA biosynthesis.


2021 ◽  
Vol 11 (21) ◽  
pp. 10204
Author(s):  
Wu Miao ◽  
Jingshuang Song ◽  
Yanwu Huang ◽  
Rongyun Liu ◽  
Gaofeng Zou ◽  
...  

Cold stress has become one of the main abiotic stresses in pepper, which severely limits the growth and development of pepper. In this study, the physiological indicators and transcriptome of a cold-tolerance (CT) inbred line A188 and a cold-sensitive (CS) inbred line A122 under cold–rewarm treatments were studied; the aim of this study was to determine the potential of the key factors in pepper response to cold stress. Compared with CT, CS wilts more seriously after cold stress, with poor resilience, higher content of malondialdehyde, and lower content of soluble sugar and total chlorophyll. Moreover, during cold treatment, 7333 and 5953 differentially expressed genes (DEGs) were observed for CT and CS, respectively. These DEGs were significantly enriched in pathways related to photosynthesis, plant hormone signal transduction, and DNA damage repair. Interestingly, in addition to the widely studied transcription factors related to cold, it was also found that 13 NAC transcription factors increased significantly in the T4 group; meanwhile, the NAC8 (Capana02g003557) and NAC72 (Capana07g002219) in CT were significantly higher than those in CS under rewarming for 1 h after 72 h cold treatment. Notably, weighted gene coexpression network analysis identified four positively correlated modules and eight hub genes, including zinc finger proteins, heat shock 70 kda protein, and cytochrome P450 family, which are related to cold tolerance. All of these pathways and genes may be responsible for the response to cold and even the cold tolerance in pepper.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zaoxia Niu ◽  
Lijun Liu ◽  
Yuanyuan Pu ◽  
Li Ma ◽  
Junyan Wu ◽  
...  

AbstractWinter rapeseed (Brassica rapa L.) is a major oilseed crop in Northern China, where its production was severely affected by chilling and freezing stress. However, not much is known about the role of differentially accumulated proteins (DAPs) during the chilling and freezing stress. In this study, isobaric tag for relative and absolute quantification (iTRAQ) technology was performed to identify DAPs under freezing stress. To explore the molecular mechanisms of cold stress tolerance at the cellular and protein levels, the morphological and physiological differences in the shoot apical meristem (SAM) of two winter rapeseed varieties, Longyou 7 (cold-tolerant) and Lenox (cold-sensitive), were explored in field-grown plants. Compared to Lenox, Longyou 7 had a lower SAM height and higher collar diameter. The level of malondialdehyde (MDA) and indole-3-acetic acid (IAA) content was also decreased. Simultaneously, the soluble sugars (SS) content, superoxide dismutase (SOD) activity, peroxidase (POD) activity, soluble protein (SP) content, and collar diameter were increased in Longyou 7 as compared to Lenox. A total of 6330 proteins were identified. Among this, 98, 107, 183 and 111 DAPs were expressed in L7 CK/Le CK, L7 d/Le d, Le d/Le CK and L7 d/L7 CK, respectively. Quantitative real-time PCR (RT-qPCR) analysis of the coding genes for seventeen randomly selected DAPs was performed for validation. These DAPs were identified based on gene ontology enrichment analysis, which revealed that glutathione transferase activity, carbohydrate-binding, glutathione binding, metabolic process, and IAA response were closely associated with the cold stress response. In addition, some cold-induced proteins, such as glutathione S-transferase phi 2(GSTF2), might play an essential role during cold acclimation in the SAM of Brassica rapa. The present study provides valuable information on the involvement of DAPs during cold stress responses in Brassica rapa L, and hence could be used for breeding experiments.


2020 ◽  
Author(s):  
Wen Song ◽  
Fengxian Tang ◽  
Wenchao Cai ◽  
Qin Zhang ◽  
Fake Zhou ◽  
...  

Abstract Background: Cantaloupe is susceptible to cold stress when it is stored at low temperatures, resulting in the loss of edible and commercial quality. To ascertain the molecular mechanisms of low temperatures resistance in cantaloupe, a cold-sensitive cultivar, Golden Empress-308 (GE) and a cold-tolerant cultivar, Jia Shi-310 (JS), were selected in parallel for iTRAQ quantitative proteomic analysis. Results: The two kinds of commercial cultivars were exposed to a temperature of 0.5℃ for 0, 12 and 24 days. We found that the cold-sensitive cultivar (GE) suffered more severe damage as the length of the cold treatment increased. Proteomic analysis of both cultivars indicated that the number of differentially expressed proteins (DEPs) changed remarkably during the chilly treatment. JS expressed cold-responsive proteins more rapidly and mobilized more groups of proteins than GE. Furthermore, metabolic analysis revealed that more amino acids were up-regulated in JS during the early phases of low temperatures stress. The DEPs we found were mainly related to carbohydrate and energy metabolism, structural proteins, reactive oxygen species scavenging, amino acids metabolism and signal transduction. The consequences of phenotype assays, metabolic analysis and q-PCR validation confirm the findings of the iTRAQ analysis. Conclusion: We found that the prompt response and mobilization of proteins in JS allowed it to maintain a higher level of cold tolerance than GE, and that the slower cold responses in GE may be a vital reason for the severe chilling injury commonly found in this cultivar. The candidate proteins we identified will form the basis of future studies and may improve our understanding of the mechanisms of cold tolerance in cantaloupe.


2020 ◽  
Author(s):  
Neserin Ali ◽  
Aleksandra Turkiewicz ◽  
Velocity Hughes ◽  
Elin Folkesson ◽  
Jon Tjörnstand ◽  
...  

AbstractThe underlying molecular mechanisms in osteoarthritis (OA) development are largely unknown. This study explores the proteome and the pairwise interplay of proteins on a global level in synovial fluid from patients with late-stage knee OA (arthroplasty), early knee OA (arthroscopy due to degenerative meniscal tear) and from deceased controls without knee OA.Synovial fluid samples were analyzed using state-of-the-art mass spectrometry with data-independent acquisition. The differential expression of the proteins detected was clustered and evaluated with data mining strategies and a multilevel model. Group-specific slopes of associations were estimated between expressions of each pair of identified proteins to assess the co-expression (i.e. interplay) between the proteins in each group.More proteins were increased in early-OA vs controls than late-stage OA vs controls. For most of these proteins, the fold changes between late-stage OA vs controls and early stage OA vs controls were remarkably similar suggesting potential involvement in the OA process. Further, for the first time this study illustrated distinct patterns in protein co-expression suggesting that the global interplay between the protein machinery is increased in early-OA and lost in late-stage OA. Further efforts should probably focus on earlier stages of the disease than previously considered.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242139
Author(s):  
Hui Dong ◽  
Chao Wu ◽  
Changguo Luo ◽  
Menghan Wei ◽  
Shenchun Qu ◽  
...  

Calcium-dependent protein kinases (CDPKs) are important calcium receptors, which play a crucial part in the process of sensing and decoding intracellular calcium signals during plant development and adaptation to various environmental stresses. In this study, a CDPK gene MdCPK1a, was isolated from apple (Malus×domestica) which contains 1701bp nucleotide and encodes a protein of 566 amino acid residues, and contains the conserved domain of CDPKs. The transient expression and western blot experiment showed that MdCPK1a protein was localized in the nucleus and cell plasma membrane. Ectopic expression of MdCPK1a in Nicotiana benthamiana increased the resistance of the tobacco plants to salt and cold stresses. The mechanism of MdCPK1a regulating cold resistance was further investigated. The overexpressed MdCPK1a tobacco plants had higher survival rates and longer root length than wild type (WT) plants under cold stress, and the electrolyte leakages (EL), the content of malondialdehyde (MDA) and reactive oxygen species (ROS) were lower, and accordingly, antioxidant enzyme activities, such as superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were higher, suggesting the transgenic plants suffered less chilling injury than WT plants. Moreover, the transcript levels of ROS-scavenging and stress-related genes were higher in the transgenic plants than those in WT plants whether under normal conditions or cold stress. The above results suggest that the improvement of cold tolerance in MdCPK1a-overexpressed plants was due to scavenging ROS accumulation and modulating the expression of stress-related genes.


2021 ◽  
Vol 22 (23) ◽  
pp. 12856
Author(s):  
Jinjuan Tan ◽  
Zhongjing Zhou ◽  
Hanqian Feng ◽  
Jiayun Xing ◽  
Yujie Niu ◽  
...  

Protein phosphorylation plays an important role in mediating signal transduction in cold response in plants. To better understand how plants sense and respond to the early temperature drop, we performed data-independent acquisition (DIA) method-based mass spectrometry analysis to profile the proteome and phosphoproteome of Arabidopsis seedlings upon cold stress in a time-course manner (10, 30 and 120 min of cold treatments). Our results showed the rapid and extensive changes at the phosphopeptide levels, but not at the protein abundance levels, indicating cold-mediated protein phosphorylation and dephosphorylation events. Alteration of over 1200 proteins at phosphopeptide levels were observed within 2 h of cold treatment, including over 140 kinases, over 40 transcriptional factors and over 40 E3 ligases, revealing the complexity of regulation of cold adaption. We summarized cold responsive phosphoproteins involved in phospholipid signaling, cytoskeleton reorganization, calcium signaling, and MAPK cascades. Cold-altered levels of 73 phosphopeptides (mostly novel cold-responsive) representing 62 proteins were validated by parallel reaction monitoring (PRM). In summary, this study furthers our understanding of the molecular mechanisms of cold adaption in plants and strongly supports that DIA coupled with PRM are valuable tools in uncovering early signaling events in plants.


Sign in / Sign up

Export Citation Format

Share Document