scholarly journals Characterization of thermal storage stability of waste plastic pyrolytic char modified asphalt binders with sulfur

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248465
Author(s):  
Abhinay Kumar ◽  
Rajan Choudhary ◽  
Ankush Kumar

Pyrolysis has gained a strong interest in recent times for sustainable treatment and recovery of energy-rich products from different wastes including plastic. Waste plastic pyrolytic char (PPC) generated as a carbonaceous by-product in the pyrolysis process, is gaining attention as an asphalt binder modifier. Adequate thermal storage stability is an essential requirement for a modified asphalt binder to ensure that the composite offers integrity and homogeneous properties during its storage, handling and transportation in the field. The objective of this study was to evaluate and characterize the thermal storage stability properties of PPC modified binders. PPC modified asphalt binders were fabricated and evaluated at multiple dosages of sulfur as a cross-linking agent. In addition to the conventionally used softening point difference (SPD), characterization of thermal storage stability was attempted using rheology-based separation indices (SIs) derived through temperature sweep, frequency sweep, and multiple stress creep and recovery (MSCR) tests. These rheological SIs were based on complex modulus (G*), Superpave rutting parameter (G*/sin δ), Shenoy rutting parameter (SRP), zero shear viscosity (ZSV), and MSCR Jnr (at three stress levels 0.1, 3.2 and 10 kPa). Two formulations of each rheology-based separation index were studied: (1) ratio, and (2) maximum-average difference formulations. The temperature and frequency dependencies of rheological SIs were also evaluated. Further, the Fourier transform infrared spectroscopy (FTIR) was used to characterize storage stability by comparing the chemical functionalities of the PPC modified binders. A 0.3% dosage of sulfur was found to produce the best results considering all SPD, rheology-based SIs and FTIR. Principal component analysis showed that the ratio and maximum-average formulations had similar contributions to the first principal component accounting for more than 99% of the variability.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Saeed Fatemi ◽  
Jafar Bolouri Bazaz ◽  
Seyed Ali Ziaee

Asphalt mixes encounter different distress during the life cycle of asphalt pavements, among which rutting and fatigue failure are prominent. Moreover, the addition of environmentally friendly modifiers into the asphalt binder to increase the performance of asphalt mixes has been a challenging phenomenon for researchers. Calcium lignosulfonate (CL) is a waste material that is a by-product of the wood industry. In this paper, the impact of the calcium lignosulfonate on the rutting and fatigue performance of the asphalt binder was investigated. For this purpose, the Dynamic Shear Rheometer (DSR) was utilized to run the Multiple Stress Creep Recovery (MSCR) test and evaluate G ∗ /sinδ and G ∗ ·sinδ indices for the asphalt binder containing different percentages of CL. The elastic recovery test was also conducted on the asphalt binder. In order to analyze the thermal storage stability of CL-modified asphalt binders, the storage stability test was considered. The Field Emission Scanning Electron Microscope test showed that using CL as a binder modifier makes the texture of the asphalt binder spongy and porous. The conventional test results indicated that increasing the CL amount in the asphalt binder led to an increase in the stiffness of the asphalt binder. The rheological test results showed that the rutting resistance of the asphalt binder improved by adding up to 15% of the CL powder; however, the fatigue performance and the elasticity of the asphalt binder declined by increasing the CL content in the asphalt binder. The storage stability test revealed that the dispersion of CL in the asphalt binder was uniform; moreover, the presence of CL in the asphalt binder could not adversely affect the thermal storage stability of the modified asphalt binder.


2020 ◽  
Vol 8 (2) ◽  
pp. 27-36
Author(s):  
Esraa J Al-mousawi ◽  
Rashaa H Al-Rubaee ◽  
Ammar A Shubber

Recently, polymer -nanocomposites were used to manufacture durable asphalt mixtures to replace the polymer modified binder, because of the remarkable properties and unique features of nanomaterials compared to conventional materials, such as their wide surface area and small dimensions, making it possible to be utilized as an additive for asphalt paving. Nanosilica particles (NS) are one of the latest minerals which likely integrate useful characteristics, such as huge surface area, good distributions, high absorption levels, high stability, and a high level of purity. Therefore, this paper is interested in studying the characteristics of nanocomposite-polymer modified asphalt. In laboratory work, a pure asphalt 60-70 penetration grade, has been modified separately with waste polypropylene polymer (WPP), and nanosillica composite polypropylene (NS/WPP) at different concentrations. As a result, two modified binders: waste polypropylene polymer- modified asphalt (WPP-MA), and nanosillica composite polypropylene modified asphalt (NSCPMA) were obtained. Traditional asphalt binder tests were performed for pure and modified binders such as penetration, ductility, flash and fire point test, softening point, and rotational viscosity. Also, storage stability test has been conducted to ensure the storage stability of binders at high temperatures. The results showed an improvement in physical properties and increase in mixing and compaction temperature due to the increase in stiffness of (NSCPMA). The results also indicated that the nanosillica composite polypropylene modified asphalt binders have good storage stability at high temperatures.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3073
Author(s):  
Abbas Mukhtar Adnan ◽  
Chaofeng Lü ◽  
Xue Luo ◽  
Jinchang Wang

This study has investigated the impact of graphene oxide (GO) in enhancing the performance properties of an asphalt binder. The control asphalt binder (60/70 PEN) was blended with GO in contents of 0%, 0.5%, 1%, 1.5%, 2%, and 2.5%. The permanent deformation behavior of the modified asphalt binders was evaluated based on the zero shear viscosity (ZSV) parameter through a steady shear test approach. Superpave fatigue test and the linear amplitude sweep (LAS) method were used to evaluate the fatigue behavior of the binders. A bending beam rheometer (BBR) test was conducted to evaluate the low-temperature cracking behavior. Furthermore, the storage stability of the binders was investigated using a separation test. The results of the ZSV test showed that GO considerably enhanced the steady shear viscosity and ZSV value, showing a significant contribution of the GO to the deformation resistance; moreover, GO modification changed the asphalt binder’s behavior from Newtonian to shear-thinning flow. A notable improvement in fatigue life was observed with the addition of GO to the binder based on the LAS test results and Superpave fatigue parameter. The BBR test results revealed that compared to the control asphalt, the GO-modified binders showed lower creep stiffness (S) and higher creep rate (m-value), indicating increased cracking resistance at low temperatures. Finally, the GO-modified asphalt binders exhibited good storage stability under high temperatures.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Ahmad Nazrul Hakimi Ibrahim ◽  
Nur Izzi Md. Yusoff ◽  
Norliza Mohd Akhir ◽  
Muhamad Nazri Borhan

This study was conducted to investigate the physical properties and storage stability of the 80/100 penetration grade asphalt modified with geopolymer. In this research, fly ash and alkali activators, namely sodium silicate (Na2SiO3) and sodium hydroxide (NaOH), were used as geopolymer components. The penetration, Ring and Ball softening point, ductility, and viscosity tests were conducted to determine the physical properties of geopolymer modified asphalt (GMA). Five samples of asphalt binders with varying percentages of geopolymer, namely 0, 3, 5, 7 and 9%, by weight of asphalt binder were studied. Results show that geopolymer has good compatibility with asphalt binder. The addition of geopolymer into asphalt binder resulted in improved permanent deformation resistance of the modified binder compared to that of the conventional asphalt. In conclusion, geopolymer could be considered as a potential alternative in the modification of the properties of asphalt binder.


Author(s):  
Hussain U. Bahia ◽  
Huachun Zhai ◽  
Andres Rangel

In a recent survey of users and producers of modified asphalts, stability and short-term aging were two of the main concerns regarding the use of modified asphalts. In an NCHRP project, a concentrated effort was put into development of revised or new testing procedures to better characterize the nature of modified asphalt and to solve some of the difficulties with using existing aging procedures developed for neat asphalts and modified asphalts. Three main procedures have been proposed to complement the existing Superpave procedures: the laboratory asphalt stability test, for measuring the storage stability of asphalt binders; the particulate additive test, for separation of particulate additives; and the modified rolling thin film oven test for short-term aging. The background behind the development of these test methods is explained, and typical data collected for a number of modified asphalts are presented. The results indicate that these tests show high promise in covering characteristics not covered by the current Superpave binder specifications and in solving some of the problems with the existing aging methods. The results also indicate that the behavior of modified binder can be very complex and that the method of data interpretation is very critical.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaolong Zou ◽  
Aimin Sha ◽  
Biao Ding ◽  
Yuqiao Tan ◽  
Xiaonan Huang

To investigate the effects of nanoparticle content, storage time, and storage temperature on the storage stability of asphalt binders modified by nanoparticles, hot tube storage tests, softening point tests, and dynamic-shearing rheometer (DSR) tests were adopted to evaluate the properties of two kinds of nanotitanium dioxide (TiO2) modified asphalt binders. A statistical one-way analysis of variance (ANOVA) test was employed to analyze the effects of those variations on the storage stability of the nano-TiO2 modified asphalt binders. The results indicated that the softening point, the failure temperature, the dynamic-shear viscosity, and G⁎/sinδ of the binders increased with nanoparticle content. The storage stability of the binders decreased with nanoparticle content. The impact of storage time on the storage stability of the binders was remarkable when the storage time was more than 48 h. Moreover, the storage stability of the binders at low temperatures was better than that at high temperatures. Based on the one-way ANOVA, the size of nanoparticle had little influence on the storage stability of the nano-TiO2 modified asphalt binders in this study. Reducing the nanoparticle size cannot effectively enhance the storage stability of the nanoparticle modified asphalt binder due to the agglomeration of nanoparticle.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ali Huddin Ibrahim ◽  
Mohd Rosli Mohd Hasan ◽  
Ashiru Sani ◽  
Sharvin Poovaneshvaran ◽  
Tracy Leh Xin Wong ◽  
...  

Industrial solid waste has been widely used as an alternative additive for bituminous material modification. This study aims to evaluate the basic properties and quantify the leaching potential of modified asphalt binders incorporating crumb rubber powder (CRP) from waste tires and tin slag (TS) for a local smelting company. Three percentages of CRP and TS, at 5, 10, and 15%, were considered. The conventional asphalt binder (PEN 60/70), CRP, and TS-based modified asphalt binders were analyzed for toxicity, softening point, penetration value, elastic recovery, torsional recovery (TR), and coatability index. The findings indicated that the addition of the waste materials led to no significant heavy metal content in the asphalt binder mix. Moreover, the basic and physical properties of the asphalt binders were also improved by 5, 10, and 15% of the waste, respectively. However, TS waste exhibited limited effects on all the parameters and had a 5% optimum dosage. The modified binders’ results showed that the CRP modified asphalt binders had fewer heavy metals and responded more to elastic recovery and coatability.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256030
Author(s):  
Abhinay Kumar ◽  
Rajan Choudhary ◽  
Ankush Kumar

Globally, the growing volume of waste tires and plastics has posed significant concerns about their sustainable and economical disposal. Pyrolysis provides a way for effective treatment and management of these wastes, enabling recovery of energy and produces solid pyrolytic char as a by-product. The use of pyrolytic chars in asphalt binder modification has recently gained significant interest among researchers. As asphalt binder aging influences the cracking, rutting, and moisture damage performance of asphalt binder and the mixtures, evaluation of aging characteristics of char modified asphalt binders is quite important. The main objective of this study is the investigation of the aging characteristics of asphalt binders modified with waste tire pyrolytic char (TPC) and waste plastic pyrolytic char (PPC) through rheological and spectroscopic evaluations. To imitate short-term and long-term aging conditions, the asphalt binders were first treated in a rolling thin film oven (RTFO) and then in a pressure aging vessel (PAV). The aging characteristics were determined using four rheological aging indices based on complex modulus (G*), phase angle (δ), zero shear viscosity (ZSV), and non-recoverable creep compliance (Jnr) from multiple stress creep and recovery (MSCR) test. The fatigue cracking potential was then measured through binder yield energy test (BYET). These parameters were measured through a dynamic shear rheometer. Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy analyses were then used to investigate changes in chemical composition due to aging in the char modified binders. Both TPC and PPC improved the high-temperature deformation resistance properties of asphalt binder. The TPC-modified binder showed better aging resistance than the control and PPC-modified binders, based on the different rheological and spectroscopic indices. The pyrolytic char modified binders also demonstrated good fatigue performance.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


Sign in / Sign up

Export Citation Format

Share Document