scholarly journals Evaluation of Rutting and Fatigue Behaviors of Asphalt Binders Modified with Calcium Lignosulfonate

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Saeed Fatemi ◽  
Jafar Bolouri Bazaz ◽  
Seyed Ali Ziaee

Asphalt mixes encounter different distress during the life cycle of asphalt pavements, among which rutting and fatigue failure are prominent. Moreover, the addition of environmentally friendly modifiers into the asphalt binder to increase the performance of asphalt mixes has been a challenging phenomenon for researchers. Calcium lignosulfonate (CL) is a waste material that is a by-product of the wood industry. In this paper, the impact of the calcium lignosulfonate on the rutting and fatigue performance of the asphalt binder was investigated. For this purpose, the Dynamic Shear Rheometer (DSR) was utilized to run the Multiple Stress Creep Recovery (MSCR) test and evaluate G ∗ /sinδ and G ∗ ·sinδ indices for the asphalt binder containing different percentages of CL. The elastic recovery test was also conducted on the asphalt binder. In order to analyze the thermal storage stability of CL-modified asphalt binders, the storage stability test was considered. The Field Emission Scanning Electron Microscope test showed that using CL as a binder modifier makes the texture of the asphalt binder spongy and porous. The conventional test results indicated that increasing the CL amount in the asphalt binder led to an increase in the stiffness of the asphalt binder. The rheological test results showed that the rutting resistance of the asphalt binder improved by adding up to 15% of the CL powder; however, the fatigue performance and the elasticity of the asphalt binder declined by increasing the CL content in the asphalt binder. The storage stability test revealed that the dispersion of CL in the asphalt binder was uniform; moreover, the presence of CL in the asphalt binder could not adversely affect the thermal storage stability of the modified asphalt binder.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3073
Author(s):  
Abbas Mukhtar Adnan ◽  
Chaofeng Lü ◽  
Xue Luo ◽  
Jinchang Wang

This study has investigated the impact of graphene oxide (GO) in enhancing the performance properties of an asphalt binder. The control asphalt binder (60/70 PEN) was blended with GO in contents of 0%, 0.5%, 1%, 1.5%, 2%, and 2.5%. The permanent deformation behavior of the modified asphalt binders was evaluated based on the zero shear viscosity (ZSV) parameter through a steady shear test approach. Superpave fatigue test and the linear amplitude sweep (LAS) method were used to evaluate the fatigue behavior of the binders. A bending beam rheometer (BBR) test was conducted to evaluate the low-temperature cracking behavior. Furthermore, the storage stability of the binders was investigated using a separation test. The results of the ZSV test showed that GO considerably enhanced the steady shear viscosity and ZSV value, showing a significant contribution of the GO to the deformation resistance; moreover, GO modification changed the asphalt binder’s behavior from Newtonian to shear-thinning flow. A notable improvement in fatigue life was observed with the addition of GO to the binder based on the LAS test results and Superpave fatigue parameter. The BBR test results revealed that compared to the control asphalt, the GO-modified binders showed lower creep stiffness (S) and higher creep rate (m-value), indicating increased cracking resistance at low temperatures. Finally, the GO-modified asphalt binders exhibited good storage stability under high temperatures.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248465
Author(s):  
Abhinay Kumar ◽  
Rajan Choudhary ◽  
Ankush Kumar

Pyrolysis has gained a strong interest in recent times for sustainable treatment and recovery of energy-rich products from different wastes including plastic. Waste plastic pyrolytic char (PPC) generated as a carbonaceous by-product in the pyrolysis process, is gaining attention as an asphalt binder modifier. Adequate thermal storage stability is an essential requirement for a modified asphalt binder to ensure that the composite offers integrity and homogeneous properties during its storage, handling and transportation in the field. The objective of this study was to evaluate and characterize the thermal storage stability properties of PPC modified binders. PPC modified asphalt binders were fabricated and evaluated at multiple dosages of sulfur as a cross-linking agent. In addition to the conventionally used softening point difference (SPD), characterization of thermal storage stability was attempted using rheology-based separation indices (SIs) derived through temperature sweep, frequency sweep, and multiple stress creep and recovery (MSCR) tests. These rheological SIs were based on complex modulus (G*), Superpave rutting parameter (G*/sin δ), Shenoy rutting parameter (SRP), zero shear viscosity (ZSV), and MSCR Jnr (at three stress levels 0.1, 3.2 and 10 kPa). Two formulations of each rheology-based separation index were studied: (1) ratio, and (2) maximum-average difference formulations. The temperature and frequency dependencies of rheological SIs were also evaluated. Further, the Fourier transform infrared spectroscopy (FTIR) was used to characterize storage stability by comparing the chemical functionalities of the PPC modified binders. A 0.3% dosage of sulfur was found to produce the best results considering all SPD, rheology-based SIs and FTIR. Principal component analysis showed that the ratio and maximum-average formulations had similar contributions to the first principal component accounting for more than 99% of the variability.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaolong Zou ◽  
Aimin Sha ◽  
Biao Ding ◽  
Yuqiao Tan ◽  
Xiaonan Huang

To investigate the effects of nanoparticle content, storage time, and storage temperature on the storage stability of asphalt binders modified by nanoparticles, hot tube storage tests, softening point tests, and dynamic-shearing rheometer (DSR) tests were adopted to evaluate the properties of two kinds of nanotitanium dioxide (TiO2) modified asphalt binders. A statistical one-way analysis of variance (ANOVA) test was employed to analyze the effects of those variations on the storage stability of the nano-TiO2 modified asphalt binders. The results indicated that the softening point, the failure temperature, the dynamic-shear viscosity, and G⁎/sinδ of the binders increased with nanoparticle content. The storage stability of the binders decreased with nanoparticle content. The impact of storage time on the storage stability of the binders was remarkable when the storage time was more than 48 h. Moreover, the storage stability of the binders at low temperatures was better than that at high temperatures. Based on the one-way ANOVA, the size of nanoparticle had little influence on the storage stability of the nano-TiO2 modified asphalt binders in this study. Reducing the nanoparticle size cannot effectively enhance the storage stability of the nanoparticle modified asphalt binder due to the agglomeration of nanoparticle.


Author(s):  
Faheem Sadiq Bhat ◽  
Mohammad Shafi Mir

The current study investigates the synergized effect of a nanomaterial and two warm mix additives asphalt (WMA) additives on different properties of asphalt binders. The study used an optimal percentage of 2% for nano-Al2O3; two WMA additives were used in different concentrations. The results revealed that the addition of WMA additives increased the softening point of nano-Al2O3 modified asphalt binder. Penetration and ductility results showed a decrease after the introduction of WMA additives. The viscosity of nano-Al2O3 modified asphalt binders showed a reduction after the introduction of WMA additives. Rutting evaluation was done by using the superpave rutting parameter and multiple stress creep and recovery (MSCR) test. The fatigue performance of the asphalt binders was measured using the superpave fatigue parameter and linear amplitude sweep (LAS) test. Results showed that the introduction of WMA additives improved the rutting and fatigue performance of nano-Al2O3 modified asphalt binders. The introduction of WMA additives enhanced the aging performance of the nano-Al2O3 modified asphalt binders.


Environments ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 47
Author(s):  
Lim Min Khiong ◽  
Md. Safiuddin ◽  
Mohammad Abdul Mannan ◽  
Resdiansyah

This paper presents the results of a laboratory-based experimental investigation on the properties of asphalt binder and hot-mix asphalt (HMA) mixes modified by locally available crumb rubber, which was used as a partial replacement of asphalt by weight. In this study, fine crumb rubber with a particle size in the range of 0.3–0.6 mm, obtained from scrap tires, was added to the asphalt binder through the wet process. Crumb rubber contents of 5%, 10%, 15%, and 19% by weight of asphalt were added to the virgin binder in order to prepare the modified asphalt binder samples, while the unmodified asphalt binder was used as the control sample. The crumb rubber modified binder samples were examined for measuring viscosity indirectly using the penetration test, and temperature resistance using the softening point test. Later, both the modified and unmodified asphalt binders were used to produce HMA mixes. Two categories of HMA mix commonly used in Malaysia—namely, AC 14 (dense-graded) and SMA 14 (gap-graded)—were produced using the modified asphalt binders containing 5%, 10%, 15%, and 19% crumb rubber. Two AC 14 and SMA 14 control mixes were also produced, incorporating the unmodified asphalt binder (0% crumb rubber). All of the AC 14 and SMA 14 asphalt mixes were examined in order to determine their volumetric properties, such as bulk density, voids in total mix (VTM), voids in mineral aggregate (VMA), and voids filled with asphalt (VFA). In addition, the Marshall stability, Marshall flow, and stiffness of all of the AC 14 and SMA 14 mixes were determined. Test results indicated that the modified asphalt binders possessed higher viscosity and temperature resistance than the unmodified asphalt binder. The viscosity and temperature resistance of the asphalt binders increased with the increase in their crumb rubber content. The increased crumb rubber content also led to improvements in the volumetric properties (bulk density, VTM, VMA, and VFA) of the AC 14 and SMA 14 mixes. In addition, the performance characteristics of the AC 14 and SMA 14 mixes—such as Marshall stability, Marshall flow, and stiffness—increased with the increase in crumb rubber content. However, the AC 14 mixes performed much better than the SMA 14 mixes. The overall research findings suggest that crumb rubber can be used to produce durable and sustainable HMA mixes, with manifold environmental benefits, for use in flexible pavements carrying the heavy traffic load of highways.


2010 ◽  
Vol 97-101 ◽  
pp. 724-727 ◽  
Author(s):  
Qun Shan Ye ◽  
Shao Peng Wu

Dynamic shear test and creep shear test were employed to investigate the dynamic properties of various fiber modified asphalt binders with the fiber content of 1.0%. The test results indicate that complex shear modulus of asphalt binders containing fibers are increased while the phase angles are decreased greatly, which implies that the asphalt binder is reinforced by the addition of fibers and the elastic property of asphalt binder is improved significantly, especially at high frequency levels. The total strain during loading period and the residual strain after the creep shear test of asphalt binders are reduced greatly by the addition of fibers. Furthermore, the creep modulus of fiber modified asphalt binders is increased and the development rate versus loading time of creep modulus is decreased.


2013 ◽  
Vol 690-693 ◽  
pp. 1553-1567 ◽  
Author(s):  
Md Arifuzzaman ◽  
Rafiqul A. Tarefder

This study evaluates the role of antistripping agents to resist moisture-induced damage in asphalt binders. A total of five different types of antistripping agents are used. Plastomer and elastomer modified asphalt binders are used to modify the original base binder. Functionalized and non-functionalized AFM tips are used to determine adhesion in asphalt. With-CH3 tip, lime is found to be the most effective to protect moisture damage in asphalt binder as the adhesion loss is almost zero. The statistical tests show the Pearson values are very close to-1 that indicates a good correlation among the variables. Also the p-values are well below the prescribed value of 0.2% that indicates the test results to be significant from the statistical point of view.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Ahmad Nazrul Hakimi Ibrahim ◽  
Nur Izzi Md. Yusoff ◽  
Norliza Mohd Akhir ◽  
Muhamad Nazri Borhan

This study was conducted to investigate the physical properties and storage stability of the 80/100 penetration grade asphalt modified with geopolymer. In this research, fly ash and alkali activators, namely sodium silicate (Na2SiO3) and sodium hydroxide (NaOH), were used as geopolymer components. The penetration, Ring and Ball softening point, ductility, and viscosity tests were conducted to determine the physical properties of geopolymer modified asphalt (GMA). Five samples of asphalt binders with varying percentages of geopolymer, namely 0, 3, 5, 7 and 9%, by weight of asphalt binder were studied. Results show that geopolymer has good compatibility with asphalt binder. The addition of geopolymer into asphalt binder resulted in improved permanent deformation resistance of the modified binder compared to that of the conventional asphalt. In conclusion, geopolymer could be considered as a potential alternative in the modification of the properties of asphalt binder.


2022 ◽  
Vol 961 (1) ◽  
pp. 012029
Author(s):  
Hasan H Joni ◽  
Ali H Abed

Abstract One of the most significant factors for a good transportation system is the quality of the road pavement. As a result, many steps have been made to address the concerns of moisture damage to roadways, including increasing pavement quality and structural design approaches. In the last few years, there has been an increase in the attention of respective engineers to enhance the asphalt performance and provides various types of modifiers and substituting the virgin of asphaltic materials with recyclable products, to attain sustainable while reducing the price of modified pavement mixture. This article discusses the performance of modified asphalt mixes and the most commonly used recycled product, crumbs rubber, which is used as a modifier in asphaltic mixes at various contents (0, 2.5, 5, 7.5, 10, and 15% by asphalt weight), and investigates the impact of the addition rubber particles on a critical characteristic of asphalt mixtures, particularly regarding their resistance to damage of moisture. The results showed that modification of asphalt binder with CR increased Marshall’s Stability, and the inclusion of 10% of CR recorded the highest increment, increasing by 30.25%. According to increased TSR and IRS, the addition of CR improved the asphalt mixture’s moisture resistance. The addition of 7.5 % of CR resulted in the largest values of TSR and IRS, increasing by 8.8% and 12.9% respectively. Additionally, this study aims at understanding the benefits and drawbacks of recycling rubber tires and to build a concept for effectively incorporating waste materials into road pavement.


2020 ◽  
Vol 8 (2) ◽  
pp. 27-36
Author(s):  
Esraa J Al-mousawi ◽  
Rashaa H Al-Rubaee ◽  
Ammar A Shubber

Recently, polymer -nanocomposites were used to manufacture durable asphalt mixtures to replace the polymer modified binder, because of the remarkable properties and unique features of nanomaterials compared to conventional materials, such as their wide surface area and small dimensions, making it possible to be utilized as an additive for asphalt paving. Nanosilica particles (NS) are one of the latest minerals which likely integrate useful characteristics, such as huge surface area, good distributions, high absorption levels, high stability, and a high level of purity. Therefore, this paper is interested in studying the characteristics of nanocomposite-polymer modified asphalt. In laboratory work, a pure asphalt 60-70 penetration grade, has been modified separately with waste polypropylene polymer (WPP), and nanosillica composite polypropylene (NS/WPP) at different concentrations. As a result, two modified binders: waste polypropylene polymer- modified asphalt (WPP-MA), and nanosillica composite polypropylene modified asphalt (NSCPMA) were obtained. Traditional asphalt binder tests were performed for pure and modified binders such as penetration, ductility, flash and fire point test, softening point, and rotational viscosity. Also, storage stability test has been conducted to ensure the storage stability of binders at high temperatures. The results showed an improvement in physical properties and increase in mixing and compaction temperature due to the increase in stiffness of (NSCPMA). The results also indicated that the nanosillica composite polypropylene modified asphalt binders have good storage stability at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document