scholarly journals Field testing an “acoustic lighthouse”: Combined acoustic and visual cues provide a multimodal solution that reduces avian collision risk with tall human-made structures

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249826
Author(s):  
Timothy J. Boycott ◽  
Sally M. Mullis ◽  
Brandon E. Jackson ◽  
John P. Swaddle

Billions of birds fatally collide with human-made structures each year. These mortalities have consequences for population viability and conservation of endangered species. This source of human-wildlife conflict also places constraints on various industries. Furthermore, with continued increases in urbanization, the incidence of collisions continues to increase. Efforts to reduce collisions have largely focused on making structures more visible to birds through visual stimuli but have shown limited success. We investigated the efficacy of a multimodal combination of acoustic signals with visual cues to reduce avian collisions with tall structures in open airspace. Previous work has demonstrated that a combination of acoustic and visual cues can decrease collision risk of birds in captive flight trials. Extending to field tests, we predicted that novel acoustic signals would combine with the visual cues of tall communication towers to reduce collision risk for birds. We broadcast two audible frequency ranges (4 to 6 and 6 to 8 kHz) in front of tall communication towers at locations in the Atlantic migratory flyway of Virginia during annual migration and observed birds’ flight trajectories around the towers. We recorded an overall 12–16% lower rate of general bird activity surrounding towers during sound treatment conditions, compared with control (no broadcast sound) conditions. Furthermore, in 145 tracked “at-risk” flights, birds reduced flight velocity and deflected flight trajectories to a greater extent when exposed to the acoustic stimuli near the towers. In particular, the 4 to 6 kHz stimulus produced the greater effect sizes, with birds altering flight direction earlier in their trajectories and at larger distances from the towers, perhaps indicating that frequency range is more clearly audible to flying birds. This “acoustic lighthouse” concept reduces the risk of collision for birds in the field and could be applied to reduce collision risk associated with many human-made structures, such as wind turbines and tall buildings.

Author(s):  
Kayla L. Riegner ◽  
Kelly S. Steelman

Degraded visual environments (DVEs) pose significant safety and efficiency problems in military ground vehicle operations. As part of a larger research program, two field tests were conducted to evaluate driving aids while indirect driving in DVEs. The current paper presents the results of one of these field tests, and focuses on the challenges and lessons learned in designing a challenging test course and producing consistent dust clouds for assessing Soldier driving performance and workload in degraded visual environments.


Author(s):  
A. A. AL-Rawas

Collapsible soils are encountered in arid and semi-arid regions. Such soils cause potential construction problems due to their collapse upon wetting. The collapse phenomenon is primarily related to the open structure of the soil. Several soil collapse classifications based on parameters such as moisture content, dry density, Atterberg limits and clay content have been proposed in the literature as indicators of the soil collapse potential. Direct measurement of the magnitude of collapse, using laboratory and/or field tests, is essential once a soil showed indications of collapse potential. Treatment methods such as soil replacement, compaction control and chemical stabilization showed significant reduction in the settlement of collapsible soils. The design of foundations on collapsible soils depends on the depth of the soil, magnitude of collapse and economics of the design. Strip foundations are commonly used when collapsing soil extends to a shallow depth while piles and drilled piers are recommended in cases where the soil extends to several meters. This paper provides a comprehensive review of collapsible soils. These include the different types of collapsible soils, mechanisms of collapse, identification and classification methods, laboratory and field testing, treatment methods and guidelines for foundation design.


2020 ◽  
Vol 47 (1) ◽  
pp. 9-16
Author(s):  
K.D. Chamberlin ◽  
J.J. Baldessari ◽  
E.M.C. Mamani ◽  
M.V. Moreno

ABSTRACT Cultivated peanut, the third most important oilseed in the world, is consistently threatened by various diseases and pests. Sclerotinia minor Jagger (S. minor), the causal agent of Sclerotinia blight, is a major threat to peanut production in many countries and can reduce yield by up to 50% in severely infested fields. Host plant resistance will provide the most effective solution to managing Sclerotinia blight, but limited sources of resistance to the disease are available for use in breeding programs. Peanut germplasm collections are available for exploration and identification of new sources of resistance, but traditionally the process is lengthy, requiring years of field testing before those potential sources can be identified. Molecular markers associated with phenotypic traits can speed up the screening of germplasm accessions. The objective of this study was to genotype the peanut core collection of the Instituto Nacional de Tecnología Agropecuaria (INTA) Manfredi, Argentina, with a molecular marker associated with Sclerotinia blight resistance. One hundred and fifty-four (154) accessions from the collection were available and genotyped using the Simple Sequence Repeat (SSR) marker. Accessions from each botanical variety type represented in the core collection were identified as new potential sources of resistance and targeted for further evaluation in field tests for Sclerotinia blight resistance.


2014 ◽  
Vol 39 (3) ◽  
pp. 232-237 ◽  
Author(s):  
Bryce Dyer

Background/Objectives: This study introduces the importance of the aerodynamics to prosthetic limb design for athletes with either a lower-limb or upper-limb amputation. Study design: The study comprises two elements: 1) An initial experiment investigating the stability of outdoor velodrome-based field tests, and 2) An experiment evaluating the application of outdoor velodrome aerodynamic field tests to detect small-scale changes in aerodynamic drag respective of prosthetic limb componentry changes. Methods: An outdoor field-testing method is used to detect small and repeatable changes in the aerodynamic drag of an able-bodied cyclist. These changes were made at levels typical of alterations in prosthetic componentry. The field-based test method of assessment is used at a smaller level of resolution than previously reported. Results: With a carefully applied protocol, the field test method proved to be statistically stable. The results of the field test experiments demonstrate a noticeable change in overall athlete performance. Aerodynamic refinement of artificial limbs is worthwhile for athletes looking to maximise their competitive performance. Conclusion: A field-testing method illustrates the importance of the aerodynamic optimisation of prosthetic limb components. The field-testing protocol undertaken in this study gives an accessible and affordable means of doing so by prosthetists and sports engineers. Clinical relevance Using simple and accessible field-testing methods, this exploratory experiment demonstrates how small changes to riders’ equipment, consummate of the scale of a small change in prosthetics componentry, can affect the performance of an athlete. Prosthetists should consider such opportunities for performance enhancement when possible.


2009 ◽  
Vol 09 (04) ◽  
pp. 711-728 ◽  
Author(s):  
C. S. CAI ◽  
M. ARAUJO ◽  
A. NAIR ◽  
X. SHI

This paper presents field tests performed on a slab-on-girder pre-stressed concrete bridge. The bridge was tested under static loading, crawling loading, and dynamic loading. A full three-dimensional finite element prediction under both static and dynamic loadings was carried out and the results were compared with the field measurements. While acoustic emission (AE) monitoring of bridge structures is not a new vista, the method has not been fully exploited in bridge monitoring. Though numerous quantitative methods have been proposed, they have not yet developed to be useful for actual field tests of bridges. Therefore, in this study, an attempt was made to use the intensity analysis technique for damage quantification using the AE method.


Author(s):  
Kenneth Diemunsch ◽  
Keith Altamirano

This paper discusses two real-world challenges faced by Communications-Based Train Control (CBTC) testing programs. a) Why is it that even after a successful complete system Factory Acceptance Test (FAT), the performance of the CBTC system during the first few months of field tests is prone to frequent failures? On some projects, it may be months between a successful FAT and the first operation in CBTC mode. b) How accurately and efficiently can the root cause of failures during the field tests be identified and how could a test program be improved to have a smooth transition from field testing to revenue service. Unlike commissioning a conventional signaling system, where after circuit break down and operation testing are completed, the system works well during revenue service, CBTC projects experience an additional round of ‘surprises’ when the system is put in service after months or years of testing [1]. This comment is valid for both new lines and signaling upgrade projects, it should be noted that signaling upgrade projects are more prone to ‘surprises’ due to the limited track access which reduces testing time. Even though the final test results prior to revenue service indicate no ‘showstoppers’, once system is placed in service, it is common to unearth major issues that impact sustainable revenue operation. Though, as it should, this often comes as a surprise to transit agencies installing CBTC for the first time, it is almost accepted as fate by most of the experienced CBTC engineers. This paper describes the tests performed prior to placing system in revenue service and analyzes some of the issues experienced. Detailed information regarding the field tests can be found in [2]. Description of possible mitigations used by CBTC suppliers and transit agencies are included, as well as likely reasons for such a predictable pattern on CBTC projects. Finally, ideas about how to continue improving the mitigation to minimize the risk of major system issues are presented.


1989 ◽  
Vol 111 (3) ◽  
pp. 324-330 ◽  
Author(s):  
B. W. Madsen

A new portable slurry wear test apparatus developed by the Bureau of Mines, U.S. Department of the Interior, makes it possible to gather materials wear and corrosion data at a mineral processing site. The portable wear cell is identical in design to a laboratory cell reported previously. It allows simultaneous evaluation of 16 specimens in a continuous flow of fresh slurry. Data obtained from selected metals and polymers showed high-chromium white cast irons to perform particularly well in tests with an aqueous lead-zinc sulfide ore slurry. However, ultra-high-molecular-weight polyethylene that exhibited superior wear resistance in comparable laboratory tests with an aqueous slurry of silica sand did not perform as well in field tests. Such results show how misleading it can be to use laboratory data to predict relative rates of wear in industrial slurries, even under nominally identical flow conditions. Field testing is therefore needed. In situ electrochemical corrosion measurements on a low-alloy steel showed that the field and laboratory slurries were similarly corrosive.


Author(s):  
Xu Zhang ◽  
Chunfa Zhao ◽  
Xiaobo Ren ◽  
Yang Feng ◽  
Can Shi ◽  
...  

The rail pad force and its stress distribution have critical influences on the performance and fatigue life of the rail, fasteners, and sleepers. The characteristics of the rail pad force and its stress distribution in the time and frequency domain obtained from field tests carried out using matrix-based tactile surface sensor are presented in this paper. The field testing involved rail pads under various axle-loads of running trains at different speeds. The influences that the train axle-load, the operational speed, and the rail pad stiffness have on the rail pad force and its stress distribution are analyzed. The test results indicate that the rail pad stiffness has a remarkable influence on the amplitude of the rail pad force but has little influence on its dominant frequencies. The first dominant frequency of the rail pad force is quite close to the passing frequency of the vehicle length. The stress distribution on the rail pad has a parabolic shape along the longitudinal and the lateral directions with the large stress appearing near the center of the rail pad, and is remarkably affected by the service condition of the rail pad. The maximum stress is about 2.5 to 3 times of the average stress, which is significantly greater than the nominal stress resulting from the assumption of uniform stress distribution.


2013 ◽  
Vol 415 ◽  
pp. 544-547
Author(s):  
Chun Chi Li ◽  
Chang Sheng Tai ◽  
Cheng Chyuan Lai ◽  
Shang Min Fu ◽  
Yen Chun Tsai

Combined with low-speed wind tunnel experiments, this study adopted computational fluid dynamics (CFD) and the MATLAB/Simulink control software to analyze the aerodynamic attributes of a tail fin-stabilized projectile and subsequently simulate its flight trajectory with four degrees of freedom under a flight condition (M) of 0.6 and an angle of attack (α) between-60° and 60°. Comparing the CFD calculation results with the revised experiment data using the Karman-Tsien Rule showed that the aerodynamic coefficients CD, CL, and CM were similar within an angle of attack between-30° and 30°. The projectile further demonstrated excellent aerodynamic attributes within an angle of attack between-60° and 60°, maintaining stable flight. Furthermore, comparing the four-degrees-of-freedom simulation results with data from the firing table showed that the maximum height difference of trajectories at varying angles of elevation (mil) ranged from 3.07% to 4.68%, and the difference in the firing range distance ranged from 0.15% to 5.72%. To reduce the costs of field testing, this study establishes a method to design aerodynamic systems, analyze and compare flow fields, and simulate flight trajectories.


1991 ◽  
Vol 257 ◽  
Author(s):  
G.G. Wicks ◽  
A.R. Lodding ◽  
P.B. Macedo ◽  
D.E. Clark

ABSTRACTThe first field tests conducted in the United States involving burial of simulated high-level waste [HLW] forms and package components, were started in July of 1986. The program, called the Materials Interface Interactions Test or MIIT, is the largest cooperative field-testing venture in the international waste management community. Included in the study are over 900 waste form samples comprising 15 different systems supplied by 7 countries. Also included are approximately 300 potential canister or overpack metal samples along with more than 500 geologic and backfill specimens. There are almost 2000 relevant interactions that characterize this effort which is being conducted in the bedded salt site at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. The MIIT program represents a joint endeavor managed by Sandia National Laboratories in Albuquerque, N.M., and Savannah River Laboratory in Aiken, S.C. and sponsored by the U.S. Department of Energy. Also involved in MIIT are participants from various laboratories and universities in France, Germany, Belgium, Canada, Japan, Sweden, the United Kingdom, and the United States. In July of 1991, the experimental portion of the 5-yr. MIIT program was completed. Although only about 5% of all MIIT samples have been assessed thus far, there are already interesting findings that have emerged. The present paper will discuss results obtained for SRS 165/TDS waste glass after burial of 6 mo., 1 yr. and 2 yrs., along with initial analyses of 5 yr. samples.


Sign in / Sign up

Export Citation Format

Share Document