scholarly journals T cell derived HIV-1 is present in the CSF in the face of suppressive antiretroviral therapy

2021 ◽  
Vol 17 (9) ◽  
pp. e1009871
Author(s):  
Gila Lustig ◽  
Sandile Cele ◽  
Farina Karim ◽  
Anne Derache ◽  
Abigail Ngoepe ◽  
...  

HIV cerebrospinal fluid (CSF) escape, where HIV is suppressed in blood but detectable in CSF, occurs when HIV persists in the CNS despite antiretroviral therapy (ART). To determine the virus producing cell type and whether lowered CSF ART levels are responsible for CSF escape, we collected blood and CSF from 156 neurosymptomatic participants from Durban, South Africa. We observed that 28% of participants with an undetectable HIV blood viral load showed CSF escape. We detected host cell surface markers on the HIV envelope to determine the cellular source of HIV in participants on the first line regimen of efavirenz, emtricitabine, and tenofovir. We confirmed CD26 as a marker which could differentiate between T cells and macrophages and microglia, and quantified CD26 levels on the virion surface, comparing the result to virus from in vitro infected T cells or macrophages. The measured CD26 level was consistent with the presence of T cell produced virus. We found no significant differences in ART concentrations between CSF escape and fully suppressed individuals in CSF or blood, and did not observe a clear association with drug resistance mutations in CSF virus which would allow HIV to replicate. Hence, CSF HIV in the face of ART may at least partly originate in CD4+ T cell populations.

2020 ◽  
Vol 94 (10) ◽  
Author(s):  
Matthew T. Ollerton ◽  
Edward A. Berger ◽  
Elizabeth Connick ◽  
Gregory F. Burton

ABSTRACT The major obstacle to a cure for HIV infection is the persistence of replication-competent viral reservoirs during antiretroviral therapy. HIV-specific chimeric antigen receptor (CAR) T cells have been developed to target latently infected CD4+ T cells that express virus either spontaneously or after intentional latency reversal. Whether HIV-specific CAR-T cells can recognize and eliminate the follicular dendritic cell (FDC) reservoir of HIV-bound immune complexes (ICs) is unknown. We created HIV-specific CAR-T cells using human peripheral blood mononuclear cells (PBMCs) and a CAR construct that enables the expression of CD4 (domains 1 and 2) and the carbohydrate recognition domain of mannose binding lectin (MBL) to target native HIV Env (CD4-MBL CAR). We assessed CAR-T cell cytotoxicity using a carboxyfluorescein succinimidyl ester (CFSE) release assay and evaluated CAR-T cell activation through interferon gamma (IFN-γ) production and CD107a membrane accumulation by flow cytometry. CD4-MBL CAR-T cells displayed potent lytic and functional responses to Env-expressing cell lines and HIV-infected CD4+ T cells but were ineffective at targeting FDC bearing HIV-ICs. CD4-MBL CAR-T cells were unresponsive to cell-free HIV or concentrated, immobilized HIV-ICs in cell-free experiments. Blocking intercellular adhesion molecule-1 (ICAM-1) inhibited the cytolytic response of CD4-MBL CAR-T cells to Env-expressing cell lines and HIV-infected CD4+ T cells, suggesting that factors such as adhesion molecules are necessary for the stabilization of the CAR-Env interaction to elicit a cytotoxic response. Thus, CD4-MBL CAR-T cells are unable to eliminate the FDC-associated HIV reservoir, and alternative strategies to eradicate this reservoir must be sought. IMPORTANCE Efforts to cure HIV infection have focused primarily on the elimination of latently infected CD4+ T cells. Few studies have addressed the unique reservoir of infectious HIV that exists on follicular dendritic cells (FDCs), persists in vivo during antiretroviral therapy, and likely contributes to viral rebound upon cessation of antiretroviral therapy. We assessed the efficacy of a novel HIV-specific chimeric antigen receptor (CAR) T cell to target both HIV-infected CD4+ T cells and the FDC reservoir in vitro. Although CAR-T cells eliminated CD4+ T cells that express HIV, they did not respond to or eliminate FDC bound to HIV. These findings reveal a fundamental limitation to CAR-T cell therapy to eradicate HIV.


2017 ◽  
Vol 2 (3) ◽  
pp. 335 ◽  
Author(s):  
Michael L Freeman ◽  
Stephen R. Morris ◽  
Michael M. Lederman

Background: Mucosa-associated invariant T (MAIT) cells are a recently identified class of innate-like T cells that are involved in the mucosal immune response. MAIT cells are characterized by expression of TCR Va7.2 and CD161. In HIV infection, there is a profound early loss of MAIT cells from the circulation that never fully recovers, even after prolonged viral control with antiretroviral therapy (ART).Methods: We analyzed PBMCs from fresh whole blood from HIV-negative or ART-treated HIV-positive donors with full (Immune Success) or impaired (Immune Failure) CD4+ T- cell recovery by flow cytometry for T-cell markers, TCR Va7.2, and CD161. The PBMCs were cultured with or without TCR-mediated stimulation, and CD161 expression was assessed on Va7.2+ T cells. Interferon-g (IFNg) production was assessed by intracellular cytokine staining.Results: We found a decrease in the percentage of CD3+ T cells that expressed CD161 and the percentage of Va7.2+ T cells that expressed CD161, in HIV-infected individuals. We also found a significant increase in the percentage of T cells that were Va7.2+CD161- in immune failure compared to controls, accompanied by an increase in the percentage of Va7.2+CD161- T cells that express CD8+ in donors with immune failure, but not immune success. After TCR stimulation in vitro, Va7.2+ T cells reduced expression of CD161, yet Va7.2+ CD161- cells from immune failure donors retained the ability to express IFNg on stimulation.Conclusions: Our findings suggest that in immune failure patients, the reduction in peripheral MAIT cells is due, at least in part, to a loss in CD161 expression, and is not merely the result of trafficking into mucosal tissues or cell death. These CD161- cells retain their function.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abigail E. Schiff ◽  
Alice H. Linder ◽  
Shillah N. Luhembo ◽  
Stephanie Banning ◽  
Martin J. Deymier ◽  
...  

AbstractAlveolar macrophages (AMs) are critical for defense against airborne pathogens and AM dysfunction is thought to contribute to the increased burden of pulmonary infections observed in individuals living with HIV-1 (HIV). While HIV nucleic acids have been detected in AMs early in infection, circulating HIV during acute and chronic infection is usually CCR5 T cell-tropic (T-tropic) and enters macrophages inefficiently in vitro. The mechanism by which T-tropic viruses infect AMs remains unknown. We collected AMs by bronchoscopy performed in HIV-infected, antiretroviral therapy (ART)-naive and uninfected subjects. We found that viral constructs made with primary HIV envelope sequences isolated from both AMs and plasma were T-tropic and inefficiently infected macrophages. However, these isolates productively infected macrophages when co-cultured with HIV-infected CD4+ T cells. In addition, we provide evidence that T-tropic HIV is transmitted from infected CD4+ T cells to the AM cytosol. We conclude that AM-derived HIV isolates are T-tropic and can enter macrophages through contact with an infected CD4+ T cell, which results in productive infection of AMs. CD4+ T cell-dependent entry of HIV into AMs helps explain the presence of HIV in AMs despite inefficient cell-free infection, and may contribute to AM dysfunction in people living with HIV.


2020 ◽  
Vol 4 (18) ◽  
pp. 4512-4521
Author(s):  
Sydney R. Simpson ◽  
Meera V. Singh ◽  
Stephen Dewhurst ◽  
Giovanni Schifitto ◽  
Sanjay B. Maggirwar

Abstract Platelets were recently found to harbor infectious HIV virions in infected individuals who are on antiretroviral treatment with poor CD4+ T-cell recovery. In this study, we screened platelets from recently infected individuals, before and after antiretroviral therapy, for the presence of virus and examined platelet activation, as well as CD4+ T-cell recovery. This was followed by in vitro studies assessing platelet–CD4+ T-cell complex formation as a contributing factor to viral transmission. HIV+ platelets were detected in 10 of 10 acutely infected individuals with no prior history of antiretroviral therapy. The percentage of HIV+ platelets dropped significantly after 3 months of antiretroviral therapy in all of the study participants. These individuals also demonstrated significant recovery of CD4+ T cells. Interestingly, the percentage of HIV+ platelets correlated positively with viral load but not with CD4+ T-cell count. Furthermore, we found that platelet activation with soluble CD40L or thrombin receptor activator peptide 6 (TRAP6) increased platelet-virus interactions in vitro. TRAP6-mediated interactions were reduced by platelet antagonists, aspirin, and R406. We demonstrated that platelets transmit the virus to CD4+ T cells, and this transinfection was abolished by inhibiting platelet–T-cell complex formation via exposure to an anti-CD62P antibody. Additionally, treatment with TRAP6 significantly increased the transinfection, which was also inhibited by aspirin and R206. These results reveal that platelets have the potential to promote HIV viral spread during the acute stage of infection, by harboring infectious virus transmitting infection to susceptible CD4+ T cells through complex formation.


2019 ◽  
Author(s):  
Gila Lustig ◽  
Sandile Cele ◽  
Farina Karim ◽  
Yashica Ganga ◽  
Khadija Khan ◽  
...  

AbstractHIV persists despite antiretroviral therapy (ART) in cellular reservoirs thought to occur in distinct anatomical compartments. Therapy failure may occur because of incomplete ART adherence and possibly viral replication at some reservoir sites. The CNS may serve as a reservoir site due to lowered ART penetration and virus production from long-lived tissue resident macrophages. Compelling evidence for the CNS as a reservoir is the existence of individuals where HIV is suppressed below limit of detection in blood but detectable in the cerebrospinal fluid (CSF), termed CSF Escape. Here, we asked whether HIV in CSF Escape individuals is derived from macrophages or persists due to lowered ART. We used cell surface markers on the HIV envelope to determine the cellular source of HIV. We verified detection usingin vitroderived virus from infected macrophages and T cells and tested CSF from CSF Escape individuals. We observed host surface markers consistent with T cell origin. We also measured ART concentrations in the CSF and plasma. We found a dramatic decrease in CSF ART concentrations described previously, but no significant difference between CSF Escape versus fully suppressed individuals. To examine the effect of the observed CSF ART concentrations on HIV replication, we used long-term infection with ART in cell culture. CSF Escape ART levels led to either HIV suppression or evolution of drug resistance, but not replication of drug sensitive HIV. These observations argue that persistent CNS viremia despite ART can be T cell generated and may result in drug resistance and therapy failure.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 654-654 ◽  
Author(s):  
David M. Barrett ◽  
Nathan Singh ◽  
Ted J. Hofmann ◽  
Zachary Gershenson ◽  
Stephan A. Grupp

Abstract Introduction: Anti-CD19 chimeric antigen receptor T cells (CART19) generate unprecedented complete response rates of up to 90% in relapsing/refractory acute lymphoblastic leukemia. Associated with this therapy is a multi-symptom toxicity known as cytokine release syndrome (CRS). Clinically CRS resembles macrophage activation syndrome (MAS), with a pattern of cytokines in serum coupled with other biomarkers (such as ferritin) and physical findings (fever, sudden organomegaly, confusion). Clinical interest has focused on interleukin-6 (IL-6), as blocking this pathway with tocilizumab (an IL-6R antagonist) has relieved the most life-threatening aspects of CRS in patients. Nothing is known, however, about the mechanism behind the triggering of CAR associated CRS/MAS nor the cellular sources of the toxic cytokines. This is a critical lack of knowledge, as each CAR product may result in a different CRS resulting in different clinical outcomes and management strategies. We sought to identify the cellular source of IL-6 and other MAS cytokines specifically during a 41BB CAR mediated CRS, and cross validate with investigations into patient peripheral blood PBMCs during CRS. Results: Using a xenograft model of a primary patient leukemia and CART19 from a patient that experienced Grade 4 CRS, we measured cytokine production in the serum of animals 3 and 7 days post CART19. While we could detect GMCSF, IL-2 and IFNg easily, IL-6 was not detected and the animals did not appear ill during this phase despite disease response. Given the clinical similarities of CRS to MAS, we performed co-culture of CART19 T cells, Nalm-6 leukemia and cells derived in vitro from peripheral blood monocytes (which were autologous to the CAR T cells) including immature dendritic cells (iDC), mature dendritic cells (mDC) and macrophages. Similar to the in vivo results, coculture of CART19 and Nalm-6 produced high levels of GMCSF, IFNg, IL-2 and IL-10 but no detectable IL-6 or IL-8. Only in the presence of the monocyte lineage antigen presenting cells (APCs) did we observe IL-6 and IL-8 release (more than 100 fold increase over controls). Transwell in vitro experiments separating CART19/Nalm-6 from the APCs showed the same pattern, indicating the CART19 mediated killing of target cells induces the IL-6 release from APCs in a contact independent manner. Nanostring RNA analysis of separated cell populations indicated that IL-6 and IL-8 are exclusively produced by APCs, not CART19 or Nalm-6 (Figure 1). Both CD107a degranulation and the total Nanostring RNA profile of CART19 was not different in the presence or absence of APCs, indicating that an MAS-like CRS is likely not part of CART19 efficacy. Finally, we analyzed the peripheral blood mononuclear cells of 18 patients receiving CART19 for pediatric ALL by Nanostring. Patients with Grade 4 CRS and only circulating T cells showed no IL-6 or IL-8 RNA, confirming in vivo that CART19 cells are not the cellular source of IL-6 during CRS. Unsupervised clustering of the Nanostring profiles also revealed four distinct gene signatures: one for patients with only circulating leukemic blasts, two for Grade 2-3 CRS that clustered separately and one for Grade 4 CRS (Figure 2). Conclusions: Here we demonstrate that IL-6 as part of CRS is produced by APCs and not T cells in response to CART19 mediated killing of leukemia, and that CART19 cells do not seem affected by the presence of CRS cytokines either in transcriptional profile or killing potential. This data provides the rationale for blocking this toxic cytokine before symptoms appear without changing CART19 efficacy, in addition to supporting a rapid Nanostring based profile to identify prospectively the patients at risk for Grade 4 CRS. Figure 1. Scatterplot of RNA transcript levels from CAR T cells (blue) in the act of killing leukemia cells versus the transcript levels from APCs separated by transwell insert. There are clear distinctions on the cellular source of key cytokines in CRS, including IFNg, GMCSF and IL2 from CAR T cells and IL6 and IL8 from APCs. Figure 1. Scatterplot of RNA transcript levels from CAR T cells (blue) in the act of killing leukemia cells versus the transcript levels from APCs separated by transwell insert. There are clear distinctions on the cellular source of key cytokines in CRS, including IFNg, GMCSF and IL2 from CAR T cells and IL6 and IL8 from APCs. Figure 2. Unsupervised clustering shows four groups of CRS clusters based on T cell, monocyte and B cell genes. Each column is a patient sample, each row a single gene. Grade 4 is dominated by T cell genes only. Figure 2. Unsupervised clustering shows four groups of CRS clusters based on T cell, monocyte and B cell genes. Each column is a patient sample, each row a single gene. Grade 4 is dominated by T cell genes only. Disclosures Barrett: Novartis: Research Funding. Grupp:Novartis: Consultancy, Research Funding; Jazz Pharmaceuticals: Consultancy; Pfizer: Consultancy.


2019 ◽  
Vol 5 (3) ◽  
pp. 63
Author(s):  
Alice Bayiyana ◽  
Samuel Okurut ◽  
Rose Nabatanzi ◽  
Godfrey Zziwa ◽  
David R. Boulware ◽  
...  

Despite improvement in the prognosis of HIV/AIDS (human immunodeficiency virus/acquired immune deficiency syndrome) patients on antiretroviral therapy (ART), cryptococcal meningitis (CM) still causes 10–15% mortality among HIV-infected patients. The immunological impact of ART on the CD4+ and CD8+ T cell repertoire during cryptococcal co-infection is unclear. We determined longitudinal phenotypic changes in T cell subsets among patients with CM after they initiated ART. We hypothesized that ART alters the clonotypic phenotype and structural composition of CD4+ and CD8+ T cells during CM co-infection. For this substudy, peripheral blood mononuclear cells (PBMC) were isolated at four time points from CM patients following ART initiation during the parent study (ClinicalTrials.gov number, NCT01075152). Phenotypic characterization of CD4+ and CD8+ T cells was done using T cell surface marker monoclonal antibodies by flow cytometry. There was variation in the expression of immunophenotypic markers defining central memory (CD27+CD45R0+), effector memory (CD45R0+CD27–), immune activation (CD38+ and Human Leucocyte Antigen DR (HLA-DR+), and exhaustion (Programmed cell death protein one (PD-1) in the CD4+ T cell subset. In comparison to the CD4+ T cell population, the CD8+ central memory subset declined gradually with minimal increase in the effector memory subset. Both CD4+ and CD8+ T cell immune exhaustion and activation markers remained elevated over 12 weeks. The relative surge and decline in the expression of T cell surface markers outlines a variation in the differentiation of CD4+ T cells during ART treatment during CM co-infection.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashton C. Trotman-Grant ◽  
Mahmood Mohtashami ◽  
Joshua De Sousa Casal ◽  
Elisa C. Martinez ◽  
Dylan Lee ◽  
...  

AbstractT cells are pivotal effectors of the immune system and can be harnessed as therapeutics for regenerative medicine and cancer immunotherapy. An unmet challenge in the field is the development of a clinically relevant system that is readily scalable to generate large numbers of T-lineage cells from hematopoietic stem/progenitor cells (HSPCs). Here, we report a stromal cell-free, microbead-based approach that supports the efficient in vitro development of both human progenitor T (proT) cells and T-lineage cells from CD34+cells sourced from cord blood, GCSF-mobilized peripheral blood, and pluripotent stem cells (PSCs). DL4-μbeads, along with lymphopoietic cytokines, induce an ordered sequence of differentiation from CD34+ cells to CD34+CD7+CD5+ proT cells to CD3+αβ T cells. Single-cell RNA sequencing of human PSC-derived proT cells reveals a transcriptional profile similar to the earliest thymocytes found in the embryonic and fetal thymus. Furthermore, the adoptive transfer of CD34+CD7+ proT cells into immunodeficient mice demonstrates efficient thymic engraftment and functional maturation of peripheral T cells. DL4-μbeads provide a simple and robust platform to both study human T cell development and facilitate the development of engineered T cell therapies from renewable sources.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A812-A812
Author(s):  
Pia Aehnlich ◽  
Per Thor Straten ◽  
Ana Micaela Carnaz Simoes ◽  
Signe Skadborg ◽  
Gitte Olofsson

BackgroundAdoptive cell therapy (ACT) is an approved treatment option for certain hematological cancers and has also shown success for some solid cancers. Still, benefit and eligibility do not extend to all patients. ACT with Vγ9Vδ2 T cells is a promising approach to overcome this hurdle.MethodsIn this study, we explored the effect of different cytokine conditions on the expansion of Vγ9Vδ2 T cells in vitro.ResultsWe could show that Vγ9Vδ2 T cell expansion is feasible with two different cytokine conditions: (a) 1000U/ml interleukin (IL)-2 and (b) 100U/ml IL-2+100U/ml IL-15. We did not observe differences in expansion rate or Vγ9Vδ2 T cell purity between the conditions; however, IL-2/IL-15-expanded Vγ9Vδ2 T cells displayed enhanced cytotoxicity against tumor cells, also in hypoxia. While this increase in killing capacity was not reflected in phenotype, we demonstrated that IL-2/IL-15-expanded Vγ9Vδ2 T cells harbor increased amounts of perforin, granzyme B and granulysin in a resting state and release more upon activation. IL-2/IL-15-expanded Vγ9Vδ2 T cells also showed higher levels of transcription factor T-bet, which could indicate that T-bet and cytotoxic molecule levels confer the increased cytotoxicity.ConclusionsThese results advocate the inclusion of IL-15 into ex vivo Vγ9Vδ2 T cell expansion protocols in future clinical studies.


Sign in / Sign up

Export Citation Format

Share Document