scholarly journals Effects of ultra-dry storage on seed germination and seedling growth of Handeliondendron bodinieri

Silva Fennica ◽  
2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Chuan Xie ◽  
Tianfeng Liu ◽  
Song Guo ◽  
Jian Peng ◽  
Zailiu Li

(H. Lév.) Rehder is a rare, endangered, and therefore, protected tree species native to China. However, there are serious limitations to the effective protection of the species, including a low seed germination-rate and difficult storage due to a high seed oil-content. Here, we evaluated the feasibility of ultra-dry seed storage and its effects on seedling growth. We used the silica gel method to prepare ultra-dry seeds with different moisture contents to find an optimal moisture content range (2.54%–4.77%). Ultra-dry treatment improved storability of . Furthermore, seeds with a moisture content of 4.77% stored at room temperature, and seeds with a moisture content of 3.97% stored at 4 °C yielded the best results. Priming with an appropriate concentration of polyethylene glycol had a certain repairing effect on ultra-dry stored seeds and improved seed vigor, with a two-day priming treatment with 20% polyethylene glycol having the best effect. Finally, compared with sand storage at 4 °C, ultra-dry storage promoted seedling growth and root development; furthermore, it alleviated storage damage to seeds, promoted soluble sugar and soluble protein accumulation, and increased seedling nitrogen, phosphorus, and potassium uptake. Therefore, ultra-dry storage can be effectively used to preserve seeds. Specifically, low-temperature storage of ultra-dry seeds with a moisture content of 3.97% enhanced seed vigor, and seedling growth and development.Handeliodendron bodinieriH. bodinieri seedsH. bodinieriH. bodinieriH. bodinieri

1996 ◽  
Vol 121 (3) ◽  
pp. 423-429 ◽  
Author(s):  
Lewis W. Jett ◽  
Gregory E. Welbaum ◽  
Ronald D. Morse

Priming, a controlled-hydration treatment followed by redrying, improves the germination and emergence of seeds from many species. We compared osmotic and matric priming to determine which was the most effective treatment for improving broccoli seed germination and to gain a greater understanding of how seed vigor is enhanced by priming. Broccoli (Brassica oleracea L. var. italica) seeds were osmotically primed in polyethylene glycol (PEG 8000) at -1.1 MPa or matrically primed in a ratio of 1.0 g seed:0.8 g synthetic calcium silicate (Micro-Cel E):1.8 ml water at -1.2 MPa. In the laboratory, germination rates and root lengths were recorded from 5 to 42C and 10 to 35C, respectively. Broccoli seeds germinated poorly at >35C. Root growth after germination was more sensitive to temperatures >30C and <15C than radicle emergence. Matric and osmotic priming increased germination rate in the laboratory, greenhouse, and field. However, matric priming had a greater effect on germination and root growth rates from 15 to 30C. Neither priming treatment affected minimum or maximum germination or root growth temperatures. Both priming treatments decreased the mean thermal time for germination by >35%. The greater germination performance of matrically primed seeds was most likely the result of increased oxygen availability during priming, increased seed Ca content, or improved membrane integrity.


Horticulturae ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 42
Author(s):  
Ai-Hua Wang ◽  
Xiao-Ling Yu ◽  
Yan-Yan Liu ◽  
Shu-Gang Chen ◽  
Fa-Guo Wang

Manglietia crassipes, a critically endangered species narrowly distributed on Mount Dayao in Guangxi, China, is also a species of ornamental interest whose variability has not been explored. Key factors leading to its endangerment have also not been studied. Here, two experiments were conducted to test the effects of different plant growth regulators and different storage conditions on germination characteristics of M. crassipes seeds. Fruit morphology was measured, and germination characteristics of fresh mature seeds were tested in order to assess natural seed vigor. Seeds were soaked in distilled water (control), or gibberellic acid (GA3), 6-benzylaminopurine (6-BA) or indoleacetic acid (IAA) solutions of different concentrations, for 48 h to determine their effects on seed germination. In addition, the effects of different seed storage conditions (constant 4 °C, −7 °C, −20 °C, or 25 °C for 100 days, wet stratification at 4 °C for 100 days) on seed germination were investigated. Results showed that the abortive rate of the mature fruits was high (28.9%) and fresh natural seeds had a low germination rate (G) and germination index (GI). Seed germination was inhibited with 6-BA at all concentrations, but only at less than 100 m·L−1 IAA; otherwise, IAA slightly promoted seed germination. GA3 broke seed dormancy and significantly accelerated seed germination by improving G, GI and initial germination time (IGT), especially over 2500 mg·L−1. The viability of seeds declined no matter how they were stored. However, 4 °C wet stratification storage was preferable for seed vigor and germination power. Our results suggest that the high abortive rate of fruits, low germination of the natural seed, seed dormancy and its intolerance to storage, contributed to the endangerment of M. crassipes. GA3 can break M. crassipes seed dormancy, which can be a benefit for future ornamental breeding and further protection or conservation.


2014 ◽  
Vol 94 (8) ◽  
pp. 1491-1499 ◽  
Author(s):  
Zhiheng Yuan ◽  
Chuntian Wang ◽  
ShiPeng Li ◽  
Xiao Li ◽  
Fuju Tai

Yuan, Z., Wang, C., Li, S., Li, X. and Tai, F. 2014. Effects of different plant hormones or PEG seed soaking on maize resistance to drought stress. Can. J. Plant Sci. 94: 1491–1499. Drought stress has a major impact on plant growth and productivity, and seed soaking is an important way to increase seedling resistance to drought stress. This study investigated whether drought hardening chemicals, such as polyethylene glycol (PEG), or plant growth regulators enhance plant drought tolerance. The effects of PEG and several plant hormones, such as indoleacetic acid, gibberellic acid 3, 6-benzylaminopurine (6-BA), on seed germination and seedling growth under drought stress were analyzed. The results revealed that seed soaking with 5×10−3 mg L−1 6-BA or 10% PEG improved maize seed germination parameters under drought stress, including seedlings dry weight, seed vigor and germination rate. In addition, some physiological indices, such as superoxide dismutase and catalase activities, soluble protein contents and malondialdehyde etc. in seedlings under drought stress were improved compared with the control. Therefore, the application of 6-BA or PEG as a seed soak treatment had a significant and synergistic effect on seed germination and seedling growth under drought stress. However, the PEG seed soak treatment maybe slightly lead to plant damage and then improved plant ability to acquire some resistance to stress, the 6-BA were not so.


Author(s):  
O.A. Zadorozhna ◽  
T. P. Shyianova ◽  
M.Yu. Skorokhodov

Aim. The aim of this work was to determine the longevity of durum wheat seeds according to the results of seed germination monitoring after seed storage for up to 19 years under controlled conditions in the National Plant Gene Bank of Ukraine. Results and Discussion. 36 accessions of spring durum wheat were investigated. These accessions belonged to var. hordeiforme, var. leucurum, var. melanopus, var. alexandrinum, var. apulicum, var. australe from seven countries; seven samples of durum winter wheat belonged to var. hordeiforme, var. leucurum were from Ukraine. Accessions were received by the Ukrainian genebank from seven countries: Ukraine, Russia, Mexico, France, Portugal, Kazakhstan and Tunisia. Seed accessions for storage were grown mainly in the eastern forest-steppe of Ukraine, stored in the National depositary in this region at unregulated temperature and at 4°C with seed moisture content of 5.5-8.0%. The mode of seed drying, which took place at temperature not higher than 25°C is discussed. The obtained results indicate high seed longevity of durum wheat under these conditions with initial seed germination rate more than 90% even in a storage facility at unregulated temperature. There were no differences in seed longevity between varieties of durum wheat under the studied storage conditions. Conclusions. Seeds of durum wheat remain unchanged for at least 10 years with a high initial germination of seeds, storage in sealed containers with moisture content 5.5-8.0% even at unregulated temperature of the eastern forest-steppe of Ukraine. Durum wheat seeds should be storage at temperature 4°C to increase seed longevity at seed moisture 5.5-8.0%.


Genetika ◽  
2012 ◽  
Vol 44 (2) ◽  
pp. 235-250 ◽  
Author(s):  
Ahmad Dadashpour

The effects of different salt sources (C Cl2, NaCl, and KCl) and concentrations, as measured by electrical conductivity, (0, "control", 1, 3, 5, 7 and 9 dS m-1) on seed germination and seedling growth of ?Ferro?, ?Obez?, ?RS 841? and ?Strong Tosa F1? pumpkin varieties used as rootstock were investigated in this study. The results showed that germination rate, root length, shoot length, fresh root weight, dry root weight, fresh shoot weight and dry shoot weights tend to decrease when the electrical conductivity of the solution is higher than 5 dS m-1, independent of salt sources and in all of the varieties. Three days after seeding, a germination ratio of 5 % was obtained from RS 841 variety in all salt source and concentrations, while a germination ratio over 50 % was obtained in ?Strong Tosa? variety for the same conditions except CaCl2 salt source. Nevertheless, seeds germinated in medium having high concentrations of CaCl2 had lower germination rate and poor seedling growth, compared to media having the same concentrations of NaCl and KCl. It was concluded that all of the varieties studied were more sensitive to the concentrations prepared using CaCl2 than that of the KCl, and NaCl.


2017 ◽  
Vol 7 (3) ◽  
pp. 146
Author(s):  
Astryani Rosyad ◽  
M. Rahmad Suhartanto ◽  
Abdul Qadir

<p>ABSTRACT<br />Information of seed quality during storage can be determined through the actual storage and storability vigor estimation. This study aimed at comparing effective accelerated aging method<br />between physical and chemical, and studying the seed deterioration during storage in ambient (T =28-30 0C, RH=75-78%) and AC (T =18-20 0C, RH =51-60%) condition with three levels of initial moisture content (8-10%, 10-12%, and 12-14%) for 20 weeks. The final objective of this research<br />was to develop model for storability vigor of papaya seed. Two experiments, accelerated aging and seed storage were conducted at Seed Laboratory, Department of Agronomy and Horticulture, Bogor Agricultural University from October 2015 to May 2016. A completely randomized design with nested factors and four replications was applied to both experiments. The results showed that physical accelerated aging using IPB 77-1 MMM machine was more effective than chemical accelerated aging using IPB 77-1 MM machine for papaya seed. The viability of seed stored in AC condition remained high until the end of the storage period, whereas it declined at 16 week storage period in the ambient condition. The viability of seed with initial moisture content of 12-14% declined faster than that of initial moisture content of 8-10% after 18 week storage periode. The model used to estimate the storability vigor of papaya seed accurately was the equation y = a + b expcx where y : storability vigor estimation, x : aging time and a,b,c : constant value. Simulation of storability vigor estimation with constant value of a, b, c and input of aging time can estimate storability seed vigor in actual storage.<br />Keywords: accelerated aging, IPB 77-1 MM machine, IPB 77-1 MMM machine, seed storage, simulation</p><p>ABSTRAK<br />Informasi mutu benih selama penyimpanan dapat diketahui melalui penyimpanan secara aktual dan pendugaan vigor daya simpan. Penelitian ini bertujuan untuk membandingkan metode<br />pengusangan cepat yang efektif antara fisik dengan kimia serta mempelajari pola penurunan viabilitas benih selama penyimpanan aktual pada kondisi simpan kamar (suhu =28-30 0C, RH =75-78%) dan AC (suhu =18-20 0C, RH =51-60%) dengan tiga tingkat kadar air awal (8-10%, 10-12%, dan 12-14%) selama 20 minggu. Tujuan akhirnya adalah membangun model vigor daya simpan benih pepaya. Penelitian pengusangan cepat dan penyimpanan dilakukan pada bulan Oktober 2015 sampai Mei 2016 di Laboratorium Benih, Departemen Agronomi dan Hortikultura, Institut Pertanian<br />Bogor. Kedua penelitian menggunakan rancangan acak lengkap tersarang dengan empat ulangan. Hasil penelitian menunjukkan bahwa pengusangan cepat secara fisik dengan alat IPB 77-1 MMM lebih efektif daripada pengusangan kimia dengan alat IPB 77-1 MM untuk benih pepaya. Viabilitas benih yang disimpan pada kondisi AC tetap tinggi hingga akhir periode simpan, sedangkan pada kondisi kamar penurunan viabilitas dimulai pada periode simpan 16 minggu. Benih yang disimpan dengan tingkat KA awal sebesar 12-14% lebih cepat mengalami penurunan viabilitas mulai periode simpan 18 minggu dibandingkan dengan benih dengan KA awal 8-10%. Hasil penelitian juga menunjukkan terdapat korelasi yang erat antara pola kemunduran benih pada pengusangan cepat dan penyimpanan aktual, sehingga model pendugaan vigor daya simpan (y) berdasarkan waktu pengusangan (x) dapat disusun dengan persamaan y = a + b expcx. Simulasi pendugaan vigor daya simpan dengan nilai konstanta a, b, dan c serta input waktu pengusangan dapat menduga vigor daya simpan benih selama penyimpanan aktual.<br />Kata kunci: alat IPB 77-1 MM, alat IPB 77-1 MMM, pengusangan cepat, penyimpanan benih,<br />simulasi</p>


2016 ◽  
Vol 4 (4) ◽  
pp. 406-413
Author(s):  
Mohammad Ali JAHANBIN ◽  
◽  
Hasan Hüseyin GEÇİT ◽  
ÜNVER İKİNCİKARAKAYA ◽  
◽  
...  

2021 ◽  
Vol 27 (3) ◽  
pp. 162-166
Author(s):  
Abdul Azeez Hussain ◽  
◽  
Ramachandra Kurup Rajvikraman ◽  

Detailed study on seed storage and germination trailed in Knema attenuata (Wall. ex Hook. f. & Thomson) Warb.– the IUCN Red Listed ‘least concern’ medicinal tree species revealed that seeds were of recalcitrant nature. Viability of the seeds could be maintained for a longer period of up to 6 months with 47% Moisture content (mc) when kept in closed polycarbonate bottles at seed bank condition [20±20C Temp. and 40% Relative Humidity (RH)]. The 55% seed germination under normal climatic condition could be enhanced to a much higher percentage (75±5) inside the mist house chamber (34±30C Temp. and 70-80% RH).


2006 ◽  
Vol 16 (1) ◽  
pp. 83-88 ◽  
Author(s):  
Juvet Razanameharizaka ◽  
Michel Grouzis ◽  
Didier Ravelomanana ◽  
Pascal Danthu

The Adansonia (baobab) genus comprises seven species in Africa, six of which are endemic to Madagascar. Depending on the species, baobabs develop in widely varying ecosystems, including arid zones and savannahs, as well as dry and wet forests. Seeds from all species exhibited orthodox behaviour, tolerating dehydration to a moisture content of around 5%. There was no physical dormancy in the two species belonging to the Brevitubae section, A. grandidieri and A. suarezensis. Their seeds germinated without any prior scarification. The five other species, belonging to Adansonia and Longitubae section, have seeds with water-impermeable coats. In the case of A. digitata and A. za, the proportion of water-impermeable seeds was around two-thirds, whereas with A. rubrostipa, A. madagascariensis and A. perrieri, the proportion was >90%. Treatments allowing for the removal of physical dormancy needed to be markedly more severe with A. madagascariensis than with the other species. None the less, it seems impossible to link these characteristics and the interspecific differences to a strategy for adaptation by these species to their environment.


Sign in / Sign up

Export Citation Format

Share Document