scholarly journals GC-MS Analysis of European Mistletoe (Viscum album L.) Plant Grown at Syrian Coastal Area

2020 ◽  
Vol 32 (5) ◽  
pp. 1087-1090
Author(s):  
Mahmoud Kamal ◽  
Ahmad Al-Sheikh Kaddour ◽  
Mohamad Haroun ◽  
Mofeed Yassin

In this study, efforts were made to isolate phtochemicals from European mistletoe (Viscum album L.) using hot (Soxhlet) and cold (magnetic rotation) extraction methods. The dried Viscum album L. (10 g) were extracted exhaustively by Soxhlet with methanol and dichloroethane solvents. Subsequently, 1 μL of sample was utilized for GC/MS analysis, which exhibited 50 peaks of phytoconstituents in the range of 0.12-22.04%. The highest flavonoids content was determined using quercetin calibration curve having a value of 62.26 mg QE/g dry weight.

2018 ◽  
Vol 9 (04) ◽  
pp. 20213-20217
Author(s):  
Dr. Ir. Ni.Gst.Ag.Gde Eka Martiningsih ◽  
Dr.Ir. I Putu Sujana, MS

Introduction of organic rice-based rice cultivation technology package through demplot is done in Subak Sungi 1 using ciherang variety. The number of farmers participating in demonstration plots in organic cultivation of paddy-based rice cultivation were 5 people, with age of farmers aged greater than 55 years occupying the highest percentage (45.45%), with elementary education level (72.75%), followed by high school education (18.25%), and junior high (9%). The average farmland area is 34.63 acres, with self-owned status (55,94%), status as penyakap 41,18% and rent status 2,88%. The farmers' response to the organic rice-based rice planting assessment is quite high, as evidenced by the evaluation that 100% of farmers participating in demonstration plots know and understand about organic rice system cultivation, and they agree to develop this cultivation system in the future. Demplot research results can increase the yield components and weight of dry grain harvest per hectare. Organic rice-based rice cultivation technology EVAGRO able to increase production of dry grain harvest significantly with a value of 6.8 tons / ha. There is a tendency of dry weight value of ciherang varieties of 6.8 tons / ha giving highest but not significantly different with PGPR organic based technology.


1974 ◽  
Vol 9 (1) ◽  
pp. 250-261
Author(s):  
D.F. Carr ◽  
J. Ganczarczyk

Abstract Activated sludge samples from two Toronto sewage treatment plants were subjected to the extraction of exocellular material by means of 9 different methods suggested for this purpose. Some of those methods, originally developed for pure bacterial cultures, were modified for the application to activated sludge. The amount of exocellular material obtained varied for Lakeview sludges from 0.4 to 3.2% of their dry volatile solids, and for Humber sludges from 0.3 to 5.3%. It has been found that extractions by the use of sulphuric acid, high-speed centrifugation and sodium hydroxide, were not suitable for the studied material. Especially surprising was the ineffectiveness of high-speed centrifugation to yield any measurable amounts of extract. The boiling water extraction is recommended for further studies on activated sludge exocellular material. The material extracted from activated sludge is very complex in nature. Generally more polysaccharide than protein was extracted, but the remaining volatile material may form up to 70% of the dry weight.


Forests ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 73
Author(s):  
Maurizio D’Auria ◽  
Marisabel Mecca ◽  
Maria Roberta Bruno ◽  
Luigi Todaro

Improvements in the yield and solubility of chestnut wood extractives, by using different extraction methods and molybdenum catalysts as support, have rarely been reported in literature. Many studies focus on the different parts of trees, except for the chemical characteristics of the remaining extractives achieved from thermally modified (THM) chestnut (Castanea sativa Mill) wood. This research seeks to better understand the effects of extraction techniques and catalysts on the yield and solubility of extractives. GC-MS analysis of the chloroform soluble and insoluble fractions was also used. Accelerated Solvent Extraction (ASE) 110 °C, Soxhlet, and autoclave extraction techniques were used to obtain extractives from untreated and thermally modified (THM) chestnut wood (170 °C for 3 h). Ethanol/H2O, ethanol/toluene, and water were the solvents used for each technique. A polyoxometalate compound (H3PMo12O40) and MoO3 supported on silica were used as catalysts. The THM induced a change in the wood’s surface color (ΔE = 21.5) and an increase in mass loss (5.9%), while the equilibrium moisture content (EMC) was reduced by 17.4% compared to the control wood. The yields of the extractives and their solubility were always higher in THM and mainly used ASE as the technique. GC-MS analysis of the extractives, without catalyst support, showed different results for each extraction technique and type of wood (untreated and THM). Ultimately, the amount of extractive compound dissolved in each solvent will differ, and the choice of extraction technique will depend on the intended final application of the extracted chemical product.


Cartilage ◽  
2021 ◽  
pp. 194760352110008
Author(s):  
Manula S. B. Rathnayake ◽  
Brooke L. Farrugia ◽  
Karyna Kulakova ◽  
Colet E. M. ter Voert ◽  
Gerjo J. V. M. van Osch ◽  
...  

Objective To investigate GAG-ECM (glycosaminoglycan–extracellular matrix) interactions in different cartilage types. To achieve this, we first aimed to determine protocols for consistent calculation of GAG content between cartilage types. Design Auricular cartilage containing both collagen and elastin was used to determine the effect of lyophilization on GAG depletion activity. Bovine articular, auricular, meniscal, and nasal cartilage plugs were treated using different reagents to selectively remove GAGs. Sulfated glycosaminoglycan (sGAG) remaining in the sample after treatment were measured, and sGAG loss was compared between cartilage types. Results The results indicate that dry weight of cartilage should be measured prior to cartilage treatment in order to provide a more accurate reference for normalization. Articular, meniscal, and nasal cartilage lost significant amounts of sGAG for all reagents used. However, only hyaluronidase was able to remove significant amount of sGAG from auricular cartilage. Furthermore, hyaluronidase was able to remove over 99% of sGAG from all cartilage types except auricular cartilage where it only removed around 76% of sGAG. The results indicate GAG-specific ECM binding for different cartilage types and locations. Conclusions In conclusion, lyophilization can be performed to determine native dry weight for normalization without affecting the degree of GAG treatment. To our knowledge, this is the first study to compare GAG-ECM interactions of different cartilage types using different GAG extraction methods. Degree of GAG depletion not only varied with cartilage type but also the same type from different anatomic locations. This suggests specific structure-function roles for GAG populations found in the tissues.


1954 ◽  
Vol 37 (3) ◽  
pp. 381-399 ◽  
Author(s):  
Ruth Hubbard

The sedimentation behavior of aqueous solutions of digitonin and of cattle rhodopsin in digitonin has been examined in the ultracentrifuge. In confirmation of earlier work, digitonin was found to sediment as a micelle (D-1) with an s20 of about 6.35 Svedberg units, and containing at least 60 molecules. The rhodopsin solutions sediment as a stoichiometric complex of rhodopsin with digitonin (RD-1) with an s20 of about 9.77 Svedberg units. The s20 of the RD-1 micelle is constant between pH 6.3 and 9.6, and in the presence of excess digitonin. RD-1 travels as a single boundary also in the electrophoresis apparatus at pH 8.5, and on filter paper at pH 8.0. The molecular weight of the RD-1 micelle lies between 260,000 and 290,000. Of this, only about 40,000 gm. are due to rhodopsin; the rest is digitonin (180 to 200 moles). Comparison of the relative concentrations of RD-1 and retinene in solutions of rhodopsin-digitonin shows that RD-1 contains only one retinene equivalent. It can therefore contain only one molecule of rhodopsin with a molecular weight of about 40,000. Cattle rhodopsin therefore contains only one chromophore consisting of a single molecule of retinene. It is likely that frog rhodopsin has a similar molecular weight and also contains only one chromophore per molecule. The molar extinction coefficient of rhodopsin is therefore identical with the extinction coefficient per mole of retinene (40,600 cm.2 per mole) and the E(1 per cent, 1 cm., 500 mµ) has a value of about 10. Rhodopsin constitutes about 14 per cent of the dry weight, and 3.7 per cent of the wet weight of cattle outer limbs. This corresponds to about 4.2 x 106 molecules of rhodopsin per outer limb. The rhodopsin content of frog outer limbs is considerably higher: about 35 per cent of the dry weight, and 10 per cent of the wet weight, corresponding to about 2.1 x 109 molecules per outer limb. Thus the frog outer limb contains about five hundred times as much rhodopsin as the cattle outer limb. But the relative volumes of these structures are such that the ratio of concentrations is only about 2.5 to 1 on a weight basis. Rhodopsin accounts for at least one-fifth of the total protein of the cattle outer limb; for the frog, this value must be higher. The extinction (K500) along its axis is about 0.037 cm.2 for the cattle outer limb, and about 0.50 cm.2 for the frog outer limb.


2019 ◽  
Vol 4 (1) ◽  
pp. 33
Author(s):  
Okti Purwaningsih ◽  
C. Tri Kusumastuti ◽  
Y. Sulistyo Nugroho ◽  
Casper Yoda Morib

The natural resources of the coastal area in Indonesia have the potential to be developed as an agricultural land with the support of both cultivation technology and land processing,  which one of them was done by using Rhizobium japonicum bacteria to meet the need of nitrogen in the soybean plants. This study aimed to determine the characteristics of nitrogen fixation in various soybean cultivars planted in the coastal area. The research was conducted in Mancingan, Parangtritis, Kretek, Bantul, DIY. The study was designed in Completely Randomized Design which consisted of two factors and was repeated three times. Factor I was Rhizobium japonicum inoculation (with inoculation and without inoculation); factor II was 10 various cultivars of soybean (Grobogan, Burangrang, Argomulyo, Anjasmara, Dena 1, Gema, Kaba, Wilis, Sinabung, Gepak Kuning). The results showed that the inoculation of Rhizobium japonicum in soybean cultivars in a coastal area could increase the number of root nodule, dry weight of root nodule, dry seed weight per plant, and harvest index. Burangrang cultivar planted in the coastal area was the most responsive to Rhizobium japonicum inoculation among other soybean cultivars tested.


2014 ◽  
Vol 68 (7) ◽  
Author(s):  
Wioleta Pietrzak ◽  
Renata Nowak ◽  
Marta Olech

AbstractThe total content of polyphenols and flavonoids determined in the same plant and their corresponding antioxidant activities may vary widely, depending on the extraction conditions applied. This study was conducted to optimise the extraction conditions of phenolics and flavonoids from the mistletoe plant. Various extraction methods, i.e. ultrasound-assisted extraction technology, maceration, maceration with stirring, accelerated solvent extraction (ASE), and extraction under reflux were evaluated for their percentage extraction of polyphenols (TPC) and flavonoids (TFC) from Viscum album subsp. abietis. In addition, the anti-radical activity of extracts was analysed using the 2,2-diphenyl-1-picrylhydrazyl method. The effects of temperature, solvent type, and concentration on the phenolic extraction efficiency and antioxidant activity were studied using chemometric and statistical methods. The results showed that the extracts of V. album subsp. abietis contained large amounts of polyphenols and flavonoids (up to 57.673 mg g−1 and 9.955 mg g−1 of dry extract, respectively) and exhibited potent antioxidant activity, hence representing promising sources of powerful antioxidants. Due to its high extraction efficiency and considerable saving of time and solvent, ASE was more effective than the other extraction techniques. Extracts prepared with water-polar solvent mixtures displayed the highest TPC, TFC, and antioxidant activity, while organic polar solvents were the least efficient extractants.


2021 ◽  
Vol 07 ◽  
Author(s):  
David E. Brune

Background: Global seafood production has doubled over the last two decades, with aquaculture now contributing nearly 50% of supply. Pressure to reduce or eliminate water and waste discharge from aquaculture increases with each passing year. In response to this pressure, producers have adopted increasingly sophisticated technology, expanding fish and shellfish production from 2,000 kg/ha to over 40,000 kg/ha. While water discharge has been drastically reduced, waste solids production from intensive aquaculture continues to pose a management challenge. One potential solution is to co-culture filter-feeding aquatic organisms with higher-value aquaculture species as a technique to harvest and covert excess bacterial and algal biomass into useful co-products and biofuels. Methods: Over a period of twenty years, the author and co-workers have designed and operated catfish and marine shrimp production systems employing co-culture of tilapia (Oreochromis niloticus) and brine shrimp (Artemia) to remove, concentrate, and convert microbial solids into animal biomass and biofertilizer. Past system operations are reviewed, and additional methods and data are presented and discussed. In the case of tilapia, a technique entitled “tilapia enhanced sedimentation” is evaluated for use in converting algae into concentrated fertilizer and fish flesh. Alternatively, brine shrimp are used to harvest and convert microbial solids into a potential fish-meal replacement. Results: Tilapia co-culture was shown to be cost-effective in controlling aquaculture system algal species and density, selectively removing cyanobacteria from culture water promoting green algal dominance, reducing off-flavor in cultured fish species. Tilapia co-culture at biomass levels from 20-25% of targeted fish carrying capacity was required to reduce algal and bacterial levels, significantly reducing oxygen demand and aeration requirements. Tilapia enhanced sedimentation was demonstrated to be effective in removing suspended algal and bacterial solids, concentrating excreted biomass into rapidly settling fecal pellets. Brine shrimp culture has been demonstrated at densities of 2,000-4,000 animals/liter, corresponding to 4 gm/liter of dry weight animal biomass concentration. Brine shrimp are capable of conversation efficiencies as high as 50% of microbial dry weigh to brine dry shrimp weight, as opposed to < 3% conversion with tilapia. However, successful Artemia culture necessitates unique culture system design and management, requiring two-stage, multiple-batch cultures of uniformly sized cohorts to yield maximum growth and conversion efficiency. Unique pH and ammonia toxicity response of brine shrimp necessitates management protocols very different from typical aquatic animal culture. Tilapia harvested algal sludge is limited to fertilizer application, yielding a value of $0.10/kg at 98% dry weight. On the other hand, brine shrimp biomass can be used as a potential fish-meal replacement at a value of $ 1.50/kg dry weight. Conclusion: Utilization of co-culture of filter-feeder organisms such as tilapia and brine shrimp to harvest, concentrate and convert algal and bacterial solids into concentrated sludge or animal biomass offers potential to provide value-added products from integrated aquaculture operations as a more environmentally friendly practice.


2018 ◽  
Vol 13 (7) ◽  
pp. 1934578X1801300
Author(s):  
Biljana Nikolić ◽  
Milić Matović ◽  
Marina Todosijević ◽  
Jovana Stanković ◽  
Mirjana Cvetković ◽  
...  

Terpene compounds of Tanacetum macrophyllum as 1) essential oils, obtained by hydrodistillation (HD), 2) essential oil extracts, obtained by simultaneous hydrodistillation and extraction (SDE) and 3) volatiles, obtained by Static Headspace GC-MS analysis (HS) were processed. Monoterpenes were the most dominant (49.2%, 49.5% and 90.4%, respectively). Profiles of essential oils obtained by HD and SD were quite similar, with oxygenated monoterpenes (39.3% and 39.4%) being the most abundant. In HS volatiles oxygenated monoterpenes also dominated (57.4%). Total sesquiterpenes were abundant in HD and SDE volatiles (38.2% and 39.2%, resp.), where sesquiterpene hydrocarbons were prevalent (27.3% and 28.7%, resp.). Germacrene D was dominant in HD and SDE oils (22.0% and 23.3%, resp.) and 1,8-cineole in HS volatiles (34.3%). To our knowledge, this is the first use of Headspace technique on T. macrophyllum. Furthermore, this is the first comparison of different techniques of volatile extraction in T. macrophyllum.


Sign in / Sign up

Export Citation Format

Share Document