scholarly journals Optimization of Essential Oil Extraction Process of White Pepper (Piper nigrum L.) Harvested in Phu Quoc Island, Kien Giang Province, Vietnam

2020 ◽  
Vol 32 (11) ◽  
pp. 2707-2712
Author(s):  
Thien Hien Tran ◽  
Thi Cam Quyen Ngo ◽  
Hoang Duy Ngo ◽  
Nguyen Huu Thuan Anh ◽  
Ton Nu Thuy An ◽  
...  

Vietnam is a leading producer and exporter of products harvested from plants of the family Piperaceae such as green pepper, black pepper, red pepper and white pepper. In this study, an attempt is made to examine the essential oil extraction process with the material of white pepper grown and harvested in Phu Quoc island, Vietnam. To maximize essential oil production, three factors consisting the ratio of materials and solvents, extraction time and extraction temperature were selected and optimized. The surface response methodology optimization resulted the highest yield of 3.6%, achieved at the ratio of material and water ratio of 1:20 g/g, extraction time of 96 min and at 130 ºC. A high F values, low P values (< 0.0001), the determination coefficient (R2 = 0.9993) and a non-significant lack of fit suggested a strong correlation between actual and predicted values of the responses. The essential oil obtained was determined for chemical composition by gas chromatography-mass spectrometry (GC-MS) method. The GC-MS results showed that major constituents existing in the oil sample were limonene, 3-carene, sabinene, β-pinene, α-pinene and α-phellandrene, accounting for 27.059, 23.345, 17.903, 9.996, 5.167 and 4.588%, respectively.

Processes ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 56 ◽  
Author(s):  
Thien Hien Tran ◽  
Le Ke Ha ◽  
Duy Chinh Nguyen ◽  
Tan Phat Dao ◽  
Le Thi Hong Nhan ◽  
...  

Black pepper (Piper nigrum L.) is a tropical crop with extensive medicinal potential in ethnomedicine and nutraceutical applications. The essential oil of black pepper finds wide applications in inhabitation of respiratory infections and soothing of muscular pains due to its warming and energizing property. The pungent bioactive piperine is responsible for this function, and therefore, efficient technology is required for an optimal extraction process of this compound. In the present article, we have developed a procedure for extracting black pepper essential oil from Vietnam, optimizing conditions that affect the extraction process. The effect of process parameters, namely material size, preservation method, the concentration of sodium chloride, the concentration of soak time, the ratio of material to water, temperature extraction, time extraction on the extraction yield, and relative efficiency were investigated. Results demonstrated that 20 g of black pepper milled with a mesh size of 160 obtained 0.48 g of essential oil (2.4%) at a raw material to water ratio of 1/21 (g/mL) at 150 °C in a time of 5.2 h. GC-MS (Gas chromatography–mass spectrometry) spectra showed that 3-carene (29.21%), D-limonene (20.94%), caryophyllene (15.05%), and β-pinene (9.77%) were present as major components. These results suggested that the essential oil extracted from Vietnamese black pepper is applicable in the manufacturing processes of insecticides and air deodorizers.


2019 ◽  
Vol 298 ◽  
pp. 89-93 ◽  
Author(s):  
Thien Hien Tran ◽  
Thi To Quyen Ngo ◽  
Thi Kim Ngan Tran ◽  
Tri Duc Lam ◽  
Tan Phat Dao ◽  
...  

Vietnam is the world's leading country in growing and producing pepper trees. In this study, we attempted the optimization of white pepper essential oil extraction. The obtained oil was then subject to determination of constituent composition via GC-MS method. The essential oil performance achieved 3.6% by hydro-distillation process with optimal conditions (25 grams of fresh pepper, size 18, 120 minutes extraction, 130°C). A total of 23 volatile constituents were identified from the white pepper essential oil, with the major components being 27.4% of Limonene, 3-Carene 22,928%, Sabinene 17,622%, β-pinene 10.068%, α-Pinene 5.426%.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2075
Author(s):  
Tan Phat Dao ◽  
Thanh Viet Nguyen ◽  
Thi Yen Nhi Tran ◽  
Xuan Tien Le ◽  
Ton Nu Thuy An ◽  
...  

Pomelo peel-derived essential oils have been gaining popularity due to greater demand for stress relief therapy or hair care therapy. In this study, we first performed optimization of parameters in the pomelo essential oil extraction process on a pilot scale to gain better insights for application in larger scale production. Then extraction kinetics, activation energy, thermodynamics, and essential oil quality during the extraction process were investigated during the steam distillation process. Three experimental conditions including material mass, steam flow rate, and extraction time were taken into consideration in response surface methodology (RSM) optimization. The optimal conditions were found as follows: sample weight of 422 g for one distillation batch, steam flow rate of 2.16 mL/min and extraction time of 106 min with the coefficient of determination R2 of 0.9812. The nonlinear kinetics demonstrated the compatibility of the kinetic model with simultaneous washing and unhindered diffusion with a washing rate constant of 0.1515 min−1 and a diffusion rate constant of 0.0236 min−1. The activation energy of the washing and diffusion process was 167.43 kJ.mol−1 and 96.25 kJ.mol−1, respectively. The thermodynamic value obtained at the ΔG° value was −35.02 kJ.mol−1. The quality of pomelo peel essential oil obtained by steam distillation was characterized by its high limonene content (96.996%), determined by GC-MS.


2019 ◽  
Vol 8 (1) ◽  
pp. 1-5
Author(s):  
Febrina Iskandar ◽  
Michael Dillo Rizki Ginting ◽  
Iriany ◽  
Okta Bani

Jasmine flower is one of the high value commodities. One of the applications of  jasmine flower  is jasmine essential oil. Jasmine essential oil is often used to produce high quality parfume. Extraction is one of the methods for extracting jasmine essential oil, usually by the help of solvent. In this study, the effect of extraction time, extraction temperature, and solvent to jasmine flower ratio on jasmine oil extraction was studied. The extraction was carried out at 30oC, 35oC, and 40oC for 2 hours, 3 hours, 4 hours, and 5 hours by using isopropyl ether. The ratio of jasmine flower to isopropyl ether were 1:3; 1:4; and 1:5 (m/v). The resulting jasmine oil was analyzed by GC-MS and its quality was assessed according to SNI 06-2385-2006 which include colour test, refractive index analysis, acid number analysis, and ester number analysis. This experiment showed that increasing of extraction time, extraction temperature, and volume of solvent lead to increase of absolute yield of jasmine essential oil. The highest jasmine oil yield was obtained at 10.63 %. The jasmine oil contained 45.34% benzyl acetate and had yellow color. Its refractive index, acid number, and ester number were 1.485, 26.228 mg KOH/gram jasmine essential oil, and 159.885 mg KOH/gram jasmine essential oil.


Author(s):  
Nik ‘Amirah Farhana Nik Ahmad Lutfi ◽  
Mohd Farid Atan ◽  
Nazeri Abdul Rahman ◽  
Shanti Faridah Salleh ◽  
Noraziah Abdul Wahab

The main objective of this study is to improve the mathematical modelling of Cymbopogon winterianus essential oil extraction by steam distillation proposed by Cassel and Vargas by minimum 5% error reduction. Two process variable of steam distillation which are extraction time and raw material state (dry or natural) has been optimized by using factorial experimental planning to obtain high yields of citronella essential oil from twig and leaves of lemongrass species Cymbopogon winterianus (C.winterianus). The optimal condition for maximum yield (0.942%) were found to be an extraction time, 4 hr, state, natural plant. The study of Cassel and Vargas was subsequently continued with five proposed kinetics model of the extraction process. The modelling of the extraction process is optimized by using one adjustable parameter of the model and the adequacy of the fit of the models to the experimental data are analyzed by using three statistical criteria that are correlation coefficient (r) ,the root mean square error (RMSE) and the mean relative deviation modulus (E). The result has shown that the mathematical model developed by Ana based on mass transfer fundamentals is the optimum mathematical model for the extraction of Cymbopogon winterianus essential oil by steam distillation.


2020 ◽  
Vol 10 (2) ◽  
pp. 144-153
Author(s):  
Fatih Kaya ◽  
Ahmet Özer

Objective: In this study, the extraction of oil from Pistacia terebinthus L’s seeds grown in Elazig-TURKEY and called menengic in domestic region was investigated. Crude oil content of the seeds obtained from this region was determined as approximately 47% (w/w). Methods: Effects of the parameters such as extraction time, temperature, seeds/solvent ratio (dosage), the particle size of seeds and type of solvent were examined on the oil extraction yield. In this context, it has concluded that up to a certain point, the extraction time has increased the yield of oil extracted. But the extraction temperature showed activity as depending on the solvent type. Results: As expected, it has been observed that the yield of oil has decreased depending on the increase in particle size and dosage as well. The mathematical model obtained by solving Fick's second law under the appropriate boundary and initial conditions were used to calculate diffusion coefficients for the extraction process. Diffusion coefficients for the seeds with a particle size of 0.55 mm were found to be between 1.15x10-11 and 1.86x10-11 m2s-1. To compare the extraction yield of Pistacia terebinthus L’s seeds with that of sunflower at the same conditions, the diffusion coefficients of sunflower seeds were calculated in the range of 9.11x10-12 and 1.13x10-11 m2s-1. Conclusion: These figures show that the diffusion coefficients calculated for both oily seeds are nearly equivalent to each other. The fatty acid composition of extracted oil from Pistacia terebinthus L’s seeds was determined by GC-FID. The GC-FID results showed that oleic, linoleic (ω-6) and palmitic acid were main fatty acids in the oil obtained from menengic seeds.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2598 ◽  
Author(s):  
Yulong Huang ◽  
Zhenxiong Yin ◽  
Jie Guo ◽  
Fengxia Wang ◽  
Ji Zhang

This study investigates an aqueous salt process (ASP) combined with microwave-assisted extraction (MAE) for the seed oil extraction from yellow horn (Xanthoceras sorbifolium Bunge). The NaCl concentration in the oil extraction process affected the oil extraction yield. Box–Behnken design (BBD) and response surface methodology (RSM) were used to optimize the extraction process. The optimal operating parameters were: 24 g/L NaCl, 300 W microwave power, 4:1 water to material ratio, an 80 min extraction time, and 45 °C extraction temperature. The chemical composition of the extracted seed oil was analyzed using gas chromatography–mass spectrometry (GC-MS). This extraction technique for yellow horn seed oil provided high throughput and high-quality oil. The present research offers a kind of green extraction method for edible oil in the food industry.


2019 ◽  
Vol 12 ◽  
pp. 1-8
Author(s):  
Faiznur Mohd Fuad ◽  
Wan Abdul Azim Wan Azzuddin

Oil from candlenut (Aleurites moluccana) was extracted using a solvent extraction technique. The influence of three parameters namely extraction time, extraction temperature as well as liquid to solid (L/S) ratio on the candlenut oil yield were studied to optimise the extraction conditions for achieving maximum oil yield. The maximum candlenut oil yield (35.67%) was achieved using methanol as a solvent at a temperature of 45oC for 80 min of extraction period. The optimum L/S ratio was 10ml/g. It was found that the candlenut oil yield increases with the increase of extraction time, extraction temperature and L/S ratio. Kinetics of solvent extraction of oil from candlenut was evaluated using Peleg’s model and Logarithmic model. The model parameters were calculated using the experimental data.  The kinetics of candlenut oil extraction conforms very well to the Peleg’s model with a high R2 value of 0.9927 and low MRPD value of 1.827%. However, the Logarithmic model can fairly describe the candlenut oil extraction process with the values of R2 and MRPD of 0.9653 and 4.352%, respectively.


2017 ◽  
Vol 9 (48) ◽  
pp. 6777-6784 ◽  
Author(s):  
Guo-Wei Yu ◽  
Qiang Cheng ◽  
Jing Nie ◽  
Peng Wang ◽  
Xia-Jun Wang ◽  
...  

Deep eutectic solvents (DESs) have been gaining much attention in recent years due to their various novel properties.


2019 ◽  
Vol 19 (2) ◽  
pp. 479
Author(s):  
Hesham Hussein Rassem ◽  
Abdurahman Hamid Nour ◽  
Rosli Mohammad Yunus ◽  
Yasmeen Hafiz Zaki ◽  
Hybat Salih Mohamed Abdlrhman

Supercritical fluid extraction (SFE) is an innovation that permits extraction of an extensive variety of different chemical composition from the plant grids. Extraction of essential oil from Jasmine flower was tentatively carried out using the supercritical CO2 technique. The effect of extraction parameters which include pressure (100–300 bar) and temperature (300–350 K) on the oil recovery was explored. The extraction process was optimized using the response surface methodology (RSM). At the SFE optimal conditions, the chemical compositions of the extracted oil were examined using gas chromatography-mass spectrometry (GC-MS) analysis. The obtained result reflected that the optimal yield of oil from Jasmine flower was 12.18% mg oil extracted/100 g dry flower, which was achieved through an SFE optimal conditions of pressure at 200 bar and extraction temperature at 325 K. A total number of six chemical compounds were tentatively identified in the Jasmine flower extracted oil at the optimal SFE conditions.


Sign in / Sign up

Export Citation Format

Share Document