Radiation Induced Gastrointestinal Damage and Protection: Nigella Sativa Seed Extract and Thymoquinone

2017 ◽  
Vol 2 (3) ◽  
pp. 264
Author(s):  
Nidhi Pandey ◽  
Priya Shri ◽  
Harsh Pandey ◽  
Yamini B. Tripathi

<p>Ionising radiation therapy is a common treatment for different types of cancers. The side effects associated with radiation includes destruction of normal cells, especially the dividing cells. The cells in the gastrointestinal (GI) tract and bone marrow are the primary targets. The GI damage is reflected by early histological changes, functional alterations and symptoms of nausea, vomiting and diarrhea. This has been designated as the radiation syndrome. Many synthetic drugs have been used to treat GI disorders but a definite cure has not been discovered so far and these available medications also cause several side effects. The herbal extracts are being tested for long time as preventive food supplement/drug in this disease. The radio protective effects of Nigella sativa (black cumin, (Ranunculacea) is already reported but its mechanism of action is not well established. Here in this review this aspect has been explored with special reference to various in vitro and in vivo models.</p>

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1860
Author(s):  
Patricia Diez-Echave ◽  
Izaskun Martín-Cabrejas ◽  
José Garrido-Mesa ◽  
Susana Langa ◽  
Teresa Vezza ◽  
...  

Limosilactobacillus reuteri INIA P572 is a strain able to produce the antimicrobial compound reuterin in dairy products, exhibiting a protective effect against some food-borne pathogens. In this study, we investigated some probiotic properties of this strain such as resistance to gastrointestinal passage or to colonic conditions, reuterin production in a colonic environment, and immunomodulatory activity, using different in vitro and in vivo models. The results showed a high resistance of this strain to gastrointestinal conditions, as well as capacity to grow and produce reuterin in a human colonic model. Although the in vitro assays using the RAW 264.7 macrophage cell line did not demonstrate direct immunomodulatory properties, the in vivo assays using a Dextran Sulphate Sodium (DSS)-induced colitic mice model showed clear immunomodulatory and protective effects of this strain.


2021 ◽  
Vol 36 (1) ◽  
pp. 964-976
Author(s):  
Ilaria Dettori ◽  
Irene Fusco ◽  
Irene Bulli ◽  
Lisa Gaviano ◽  
Elisabetta Coppi ◽  
...  

2017 ◽  
Vol 17 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Thomson Patrick Joseph ◽  
Warren Chanda ◽  
Arshad Ahmed Padhiar ◽  
Samana Batool ◽  
Shao LiQun ◽  
...  

Cancer is the leading cause of morbidity and mortality around the globe. For certain types of cancer, chemotherapy drugs have been extensively used for treatment. However, severe side effects and the development of resistance are the drawbacks of these agents. Therefore, development of new agents with no or minimal side effects is of utmost importance. In this regard, natural compounds are well recognized as drugs in several human ailments, including cancer. One class of fungi, “mushrooms,” contains numerous compounds that exhibit interesting biological activities, including antitumor activity. Many researchers, including our own group, are focusing on the anticancer potential of different mushrooms and the underlying molecular mechanism behind their action. The aim of this review is to discuss PI3K/AKT, Wnt-CTNNB1, and NF-κB signaling pathways, the occurrence of genetic alterations in them, the association of these aberrations with different human cancers and how different nodes of these pathways are targeted by various substances of mushroom origin. We have given evidence to propose the therapeutic attributes and possible mode of molecular actions of various mushroom-originated compounds. However, anticancer effects were typically demonstrated in in vitro and in vivo models and very limited number of studies have been conducted in the human population. It is our belief that this review will help the research community in designing concrete preclinical and clinical studies to test the anticancer potential of mushroom-originated compounds on different cancers harboring particular genetic alteration(s).


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 543 ◽  
Author(s):  
Raúl Domínguez-Perles ◽  
Nieves Baenas ◽  
Cristina García-Viguera

Nowadays, there is a gap between the theoretical bioactivity of (poly)phenols and their real influence in health, once ingested. Due to this, new studies, including in vitro and in vivo models that allow for exploring bioaccessibility, bioavailability, and bioactivity, need to be developed to understand the actual importance of consuming functional foods, rich in these plant secondary metabolites. Moreover, current new strategies need to be developed to enhance the content of these foods, as well as setting up new formulations rich in bioaccessible and bioavailable compounds. Altogether, it could give a new horizon in therapy, expanding the use of these natural functional compounds, ingredients, and foods in the clinical frame, reducing the use of synthetic drugs. As a result, the joint contribution of multidisciplinary experts from the food science, health, and nutrition areas, together with the industrial sector, would help to reach these objectives. Taking this into account, diverse studies have been included in this study, which comprises different strategies to approach these objectives from different, complementary, points of view, ranging from the enrichment of by-products in bioactive compounds, through different agricultural techniques, to the assimilation of these compounds by the human body, both in vitro and in vivo, as well as by clinical studies.


2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Tao Tao ◽  
Guang-Jie Liu ◽  
Xuan Shi ◽  
Yan Zhou ◽  
Yue Lu ◽  
...  

Abstract Background Microglia are resident immune cells in the central nervous system and central to the innate immune system. Excessive activation of microglia after subarachnoid haemorrhage (SAH) contributes greatly to early brain injury, which is responsible for poor outcomes. Dehydroepiandrosterone (DHEA), a steroid hormone enriched in the brain, has recently been found to regulate microglial activation. The purpose of this study was to address the role of DHEA in SAH. Methods We used in vivo models of endovascular perforation and in vitro models of haemoglobin exposure to illustrate the effects of DHEA on microglia in SAH. Results In experimental SAH mice, exogenous DHEA administration increased DHEA levels in the brain and modulated microglial activation. Ameliorated neuronal damage and improved neurological outcomes were also observed in the SAH mice pretreated with DHEA, suggesting neuronal protective effects of DHEA. In cultured microglia, DHEA elevated the mRNA and protein levels of Jumonji d3 (JMJD3, histone 3 demethylase) after haemoglobin exposure, downregulated the H3K27me3 level, and inhibited the transcription of proinflammatory genes. The devastating proinflammatory microglia-mediated effects on primary neurons were also attenuated by DHEA; however, specific inhibition of JMJD3 abolished the protective effects of DHEA. We next verified that DHEA-induced JMJD3 expression, at least in part, through the tropomyosin-related kinase A (TrkA)/Akt signalling pathway. Conclusions DHEA has a neuroprotective effect after SAH. Moreover, DHEA increases microglial JMJD3 expression to regulate proinflammatory/anti-inflammatory microglial activation after haemoglobin exposure, thereby suppressing inflammation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Qiang Liang ◽  
Xiaoran Li ◽  
Wangning Zhou ◽  
Yu Su ◽  
Shenbao He ◽  
...  

Purpose. To use in vitro and in vivo models to evaluate Glechoma longituba extract to provide scientific evidence for this extract’s antiurolithic activity. Materials and Methods. Potassium citrate was used as a positive control group. Oxidative stress (OS) markers and the expression of osteopontin (OPN) and kidney injury molecule-1 (KIM-1) were measured to assess the protective effects of Glechoma longituba. Multiple urolithiasis-related biochemical parameters were evaluated in urine and serum. Kidneys were harvested for histological examination and the assessment of crystal deposits. Results. In vitro and in vivo experiments demonstrated that treatment with Glechoma longituba extract significantly decreased calcium oxalate- (CaOx-) induced OPN expression, KIM-1 expression, and OS compared with the positive control group (P<0.05). Additionally, in vivo rats that received Glechoma longituba extract exhibited significantly decreased CaOx deposits and pathological alterations (P<0.05) compared with urolithic rats. Significantly lower levels of oxalate, creatinine, and urea and increased citrate levels were observed among rats that received Glechoma longituba (P<0.05) compared with urolithic rats. Conclusion. Glechoma longituba has antiurolithic effects due to its possible combined effects of increasing antioxidant levels, decreasing urinary stone-forming constituents and urolithiasis-related protein expression, and elevating urinary citrate levels.


2014 ◽  
Vol 2 (3) ◽  
pp. 189-198
Author(s):  
Ajay H. Bahl ◽  
Wanda Lee

Cathelicidin-related antimicrobial peptides are a family of polypeptides found in lysosomes of macrophages and polymorphonuclear leukocytes (PMNs). Some of these peptides can assume an alpha-helical conformation, others contain one or two disulfide bonds, still others are Pro- and Arg-rich, or Trp-rich. Higher levels of human cathelicidin antimicrobial protein (hCAP18), which are up-regulated by vitamin D, appear to significantly reduce the risk of death from infection in dialysis patients. Using in vitro and in vivo models of kidney infection, we demonstrate key antimicrobial and host immunomodulatory properties of cathelicidins. To directly assess the role of endogenous cathelicidin in the development of glomerulonephritis, WT and mCRAMP KO mice were provided with 5% DSS to induce glomerulonephritis. Some mice groups were administered with E. coli DNA I.P. Our findings showed that mCRAMP KO mice develop more severe glomerulonephritis. These data demonstrate key roles for cathelicidins in host defense against glomerulonephritis and the potential to inform the development of synthetic analogues to modulate specific host-pathogen interactions as novel antimicrobial therapeutics.


2008 ◽  
Vol 1214 ◽  
pp. 169-176 ◽  
Author(s):  
A. Oyagi ◽  
Y. Oida ◽  
H. Hara ◽  
H. Izuta ◽  
M. Shimazawa ◽  
...  

Author(s):  
Galaleldin Abdelkarim ◽  
Karen Gertz ◽  
Christoph Harms ◽  
Juri Katchanov ◽  
Ulrich Dirnagl ◽  
...  

In modern world, hyperlipidemia is the most common disorder mainly caused by lifestyle habits and the major cause of cardiovascular, coronary and atherosclerotic changes. Such disorder is characterized by abnormally elevated levels of any or all lipids or lipoproteins in the blood. A wide range of drugs are available for the treatment of hyperlipidemia, class of antihyperlipidemic drugs, but such drug-therapies are carried out with presence of various side effects. In the last decades, different in vitro and in vivo research have been conducted to confirm the therapeutic effects of various phytochemical agents that overcome the side effects caused by synthetic drugs. According to Ayurvedic recommendations and experimental studies, numerous phytochemical agents have been reported to possess different antihyperlipidemic properties. One of the most studied phytochemical agent - curcumin, herbal polyphenol and active ingredient which can be extracted from the powder rhizome of the plant Curcuma longa, has been reported to possess a wide range of pharmacological properties such as antimicrobial, antioxidative, antiinflammatory and anticancer property. Recent studies also suggests curcumin as potential lipid lowering candidate in treatment of hyperlipidemia. The aim of this review is to present and discuss phytochemistry, molecular mechanism of hypolipidemic activity of curcumin, demonstrating its importance as potential therapy for the treatment of hyperlipidemia.


Sign in / Sign up

Export Citation Format

Share Document