scholarly journals Terrain Accessibility Prediction for a New Multi axle Armoured Wheeled Vehicle

2019 ◽  
Vol 69 (2) ◽  
pp. 195-200 ◽  
Author(s):  
V. V. Jagirdar ◽  
M. W. Trikande

Better terrain accessibility of military vehicle makes it possible to project force at desired points in a theatre of operation. The factors responsible for terrain accessibility are slope, obstacles and soil. Torque requirement for meeting vehicle speed and gradient requirement is understood and can be analytically arrived at. It can be met by appropriate choice of engine and transmission using. There is dearth of information as well as a common metric in quantification of terrain accessibility especially soft soil trafficability. Approach adopted in this study is that of characterisation of vehicle in terms of mobility characteristic and mobility limit parameters and comparing them with vehicle in-service worldwide. Simple empirical relation has been preferred over complex analytical approach for mobility prediction and gradient climbing capability in sand has been predicted and compared with other vehicles. parametric study for tyre sizes vis-a-vis mobility parameters have been obtained and results have been presented for chosen vehicle configuration. Second part of this study is obstacle crossing capability study for standard set of obstacles. Vehicle model has been built in multi-body environment and parameters of significance viz., wheel displacement to verify correctness of model and acceleration at CG for ride comfort and ground reactions for evaluation of dynamic loads on axles have been obtained. Vehicle drivetrain configuration to achieve desired terrain accessibility in terms of soft-soil trafficability and obstacle crossing has been demonstrated.

2018 ◽  
Vol 38 (3) ◽  
pp. 288-295
Author(s):  
Guo HaoLiang ◽  
Mu XiHui ◽  
Yang XiaoYong ◽  
Lv Kai

The rubber track system can be quickly swapped on the tyres, exerting a smaller ground pressure while generating a greater adhesion to solve the problem vehicles faced in traversing rough and difficult terrain. This paper will discuss the influence of rubber track system on the ride comfort of engineering vehicles with rigid suspension. First, a multi-body dynamic model of the rubber track system and a mathematical model of contact between the ground and the track are established, and then the macro commands are programmed to add many complex contact forces. Moreover, by using the method of physical prototype obstacle testing, the correctness of the simulation model is validated. The ride comfort of the engineering vehicle when equipped with rubber track system is explored by the method of the multi-body dynamics and real vehicle test. The research shows that a flexible roller wheel system can significantly improve the ride comfort of the engineering vehicle when compared to wheeled vehicles. When the vehicle speed is low, the weighted root-mean-square acceleration of the wheeled vehicle and tracked vehicle is almost the same. At the same time, it is verified that the ride comfort of the steel-chain tracked vehicles is worse than that of rubber tracked vehicles, due to the polygon effect. Through the multi-body dynamics simulation of the virtual prototype, we can predict and evaluate the ride comfort of vehicles, saving the cost of testing and obtaining the actual experimental data, which has great significance for the research and development of vehicles.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 671
Author(s):  
Jialing Yao ◽  
Meng Wang ◽  
Zhihong Li ◽  
Yunyi Jia

To improve the handling stability of automobiles and reduce the odds of rollover, active or semi-active suspension systems are usually used to control the roll of a vehicle. However, these kinds of control systems often take a zero-roll-angle as the control target and have a limited effect on improving the performance of the vehicle when turning. Tilt control, which actively controls the vehicle to tilt inward during a curve, greatly benefits the comprehensive performance of a vehicle when it is cornering. After analyzing the advantages and disadvantages of the tilt control strategies for narrow commuter vehicles by combining the structure and dynamic characteristics of automobiles, a direct tilt control (DTC) strategy was determined to be more suitable for automobiles. A model predictive controller for the DTC strategy was designed based on an active suspension. This allowed the reverse tilt to cause the moment generated by gravity to offset that generated by the centrifugal force, thereby significantly improving the handling stability, ride comfort, vehicle speed, and rollover prevention. The model predictive controller simultaneously tracked the desired tilt angle and yaw rate, achieving path tracking while improving the anti-rollover capability of the vehicle. Simulations of step-steering input and double-lane change maneuvers were performed. The results showed that, compared with traditional zero-roll-angle control, the proposed tilt control greatly reduced the occupant’s perceived lateral acceleration and the lateral load transfer ratio when the vehicle turned and exhibited a good path-tracking performance.


Author(s):  
Mojtaba Azizi ◽  
Majid Shahravi ◽  
Jabbar-Ali Zakeri

Nowadays, with various advancements in the railway industry and increasing speed of trains, the design of railway tracks and vehicles has become vitally important. One of the frequent problems of ballasted tracks is the existence of unsupported sleepers. This phenomenon occurs due to the lack of ballast underneath the sleepers. Here, a model is presented, in which a flexible track model in a multibody dynamics program is developed, in order to study the dynamic behavior of a vehicle. By utilizing the model, it is feasible to simulate unsupported sleepers on the flexible track including rail, sleeper, and ballast components. In order to verify the results of numerical model, a field test is performed. Findings indicate that, in the case of a single unsupported sleeper through the track, the ride comfort index increased by 100% after increasing the train speed from 30 to 110 km/h. Moreover, when it is needed to have ride comfort index improvement over the uncomfortable level, the vehicle speed should be less than 70 km/h and 50 km/h for tracks with one unsupported sleeper and two unsupported sleepers, respectively.


2019 ◽  
Vol 11 (19) ◽  
pp. 5237 ◽  
Author(s):  
Teron Nguyen ◽  
Meng Xie ◽  
Xiaodong Liu ◽  
Nimal Arunachalam ◽  
Andreas Rau ◽  
...  

The development of advanced technologies has led to the emergence of autonomous vehicles. Herein, autonomous public transport (APT) systems equipped with prioritization measures are being designed to operate at ever faster speeds compared to conventional buses. Innovative APT systems are configured to accommodate prevailing passenger demand for peak as well as non-peak periods, by electronic coupling and decoupling of platooned units along travel corridors, such as the dynamic autonomous road transit (DART) system being researched in Singapore. However, there is always the trade-off between high vehicle speed versus passenger ride comfort, especially lateral ride comfort. This study analyses a new APT system within the urban context and evaluates its performance using microscopic traffic simulation. The platooning protocol of autonomous vehicles was first developed for simulating the coupling/decoupling process. Platooning performance was then simulated on VISSIM platform for various scenarios to compare the performance of DART platooning under several ride comfort levels: three bus comfort and two railway criteria. The study revealed that it is feasible to operate the DART system following the bus standing comfort criterion (ay = 1.5 m/s2) without any significant impact on system travel time. For the DART system operating to maintain a ride comfort of the high-speed train (HST) and light rail transit (LRT), the delay can constitute up to ≈ 10% and ≈ 5% of travel time, respectively. This investigation is crucial for the system delay management towards precisely designed service frequency and improved passenger ride comfort.


2017 ◽  
Vol 45 (2) ◽  
pp. 101-120 ◽  
Author(s):  
Matheus de B. Vallim ◽  
José M. C. Dos Santos ◽  
Argemiro L. A. Costa

ABSTRACT The transmission of vibrations in motorcycles and their perception by the passengers are fundamental in comfort analysis. Tire nonuniformities can generate self-excitations at the rotational frequency of the wheel and contribute to the ride vibration environment. In this work a multi-body motorcycle model is built to evaluate the ride comfort with respect to tire nonuniformities. The aim is to obtain a multi–degrees-of-freedom dynamic model that includes both the contributions of the motorcycle and tire–wheel assembly structures. This representation allows the tire nonuniformities to predict the vertical force variations on the motorcycle and can be used through a root mean square acceleration evaluation for ride comfort analysis. The motorcycle model proposed is a 10-degrees-of-freedom system, where each tire–wheel is a 4-degrees-of-freedom model. The tire–wheel assemblies include two types of nonuniformities: lumped mass imbalance and radial run-out. Simulations of analytical models are compared with experimental tests.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Qiang Li ◽  
Xiaoli Yu ◽  
Jian Wu

By taking account of double-wishbone independent suspension with two unequal-length arms, the coordinate values of articulated geometry are based on structural limitations and constraint equations of alignment parameters. The sensitivities of front wheel alignment parameters are analyzed using the space analytic geometry method with insight module in ADAMS® software. The multiobjective optimization functions are designed to calculate the coordinate values of hardpoints with front suspension since the effect of time delay due to wheelbase can be easily obtained by vehicle speed. The K&C characteristics have been investigated using GA solutions in the simulation environment. The camber angle decreases from 1.152° to 1.05° and toe-in angle reduces from 1.036° to 0.944°. The simulation results demonstrate that the suggested optimization method is able to satisfy the suspension motion to enhance ride comfort. Experimental results, obtained by K&C test bench, also indicate that the optimized suspension can track the desired trajectory while keeping the vehicle performance in various road conditions.


Author(s):  
Hengmin Qi ◽  
Yuanchang Chen ◽  
Nong Zhang ◽  
Bangji Zhang ◽  
Dong Wang ◽  
...  

The trade-off between handling stability and ride comfort is a disadvantage for the bus fitted with passive suspension due to its high center of gravity and heavy load. A novel suspension configuration with both hydraulically interconnected suspension and electronic controlled air spring is created to handle this conflicting requirement. The proposed whole vehicle system model has three subsystems: a 9-degree-of-freedom vehicle multi-body model, hydraulically interconnected suspension model, and electronic controlled air spring. The electronic controlled air spring comprises an air spring and an auxiliary air chamber, and its height can be adjusted by a fuzzy controller. Then, analytical work is performed to evaluate the handling stability and ride comfort of the vehicle with different suspension configurations under various maneuvers and suspension height modes. Finally, the vehicle on-road test is conducted to experimentally validate the proposed models. Both analytical and experimental results indicate that the vehicle fitted with hydraulically interconnected suspension and electronic controlled air spring can obtain high performance for both handling stability and ride comfort.


Author(s):  
Guangwen Xiao ◽  
Xinbiao Xiao ◽  
Zefeng Wen ◽  
Xuesong Jin

When a railway vehicle passes through a track with different weld irregularities at high speed, the impact loading of the vehicle coupled with the track is investigated in detail using a coupled vehicle/track model. In this model, a half vehicle is considered and modeled as a multi-body system. In the track model, a Timoshenko beam resting on discrete sleepers is applied to model each rail. Each sleeper is modeled as a rigid body accounting for its vertical, lateral, roll motions. A moving sleeper support model is used to simulate the interaction of the vehicle and the track. The ballast bed is replaced with equivalent masses. The equivalent dampers and springs are used to replace the connections between the parts of the vehicle and track. In calculating the coupled vehicle and track dynamics, Hertzian contact theory and the creep force theory by Shen et al. are, respectively, used to calculate the normal forces and the creep forces between the wheels and the rails. The motion equations of the vehicle-track are solved by means of an explicit integration method. The weld rail irregularity is modeled by setting a local track vertical deviation at a rail weld joint, which is described with a simplified cosine function. In the numerical analysis the effect of the different wavelength, depth, the position of the welded joint in a sleeper span, and vehicle speed is taken into account. The numerical results obtained are greatly useful in the tolerance design of welded rail profile irregularity caused by damage and hand-grinding after rail welding.


2012 ◽  
Vol 215-216 ◽  
pp. 1089-1092
Author(s):  
Zhen Ning Hu ◽  
Kai Yao ◽  
Xin Min Tian

The rubber conversion track wheel compare with the tyre has the adhesive performance well, the traction force big, well stability, compares with the steel caterpillar band chassis has the noise slightly, the quality light, the road surface non-damage merits.It can solve the wheeled vehicle the question which in the soft wet slippery location work ability drops. Based on the loader the rubber conversion track wheel design analysis results, has carried on the overall concept design to the loader track wheel.This plan uses the middle brace structure, the design absorption of shock stretching device, has solved the problem which track wheel bearing power small, the vibration and the caterpillar band tighten.Through to the loader track wheel straight line travel, climbing power, obstacle negotiation ability, changes ability the simulation analysis, has carried on the confirmation to the design proposal.The simulation result indicated that the loader track wheel road surface compatible, the climbing and obstacle crossing ability are good, change nimbly.


Author(s):  
R.B. Soujanya ◽  
D.D. Jebaseelan ◽  
S. Kannan

Passenger’s comfort in moving vehicles depends on the quality of the ride. The major cause of discomfort is the vibration transmitted to passengers due to the road irregularities. For a comfortable ride on a vehicle, vibration must stay within prescribed standards. In the present work, an attempt was made to show that, the vibrations can be limited with the use of Magneto-rheological (MR) dampers for varying road profiles than the passive damping methods. MR dampers are semi-active control devices that use MR fluids to produce controllable damping force as they are known to exhibit nonlinear behaviour. Multi body dynamic studies were done to study the response of the system using a quarter car model. In this paper, passive damping (viscous damping) was considered at natural frequency of 1.012Hz, the response of damping was observed after 10s and the acceleration was found to be 6m/s2. When MR damper is employed as the magnetic force increases, the response of the damping was better than the passive damping, at 1.2A it comes down to 0.55m/s2, and the vibration gets dampened after 1.75s. Hence, from this study it is concluded that the MR damper can be employed in automobile for better ride comfort.


Sign in / Sign up

Export Citation Format

Share Document