Dynamics of Vegetation of High Mountain Areas of the Northern Tian Shan under Different Protection and Economic Use Regimes

2020 ◽  
Vol 11 (5) ◽  
pp. 1277
Author(s):  
Sofia K. IMANKULOVA ◽  
Karatay I. SHALABAYEV ◽  
Kuandyk L. MUSSAEV ◽  
Beibit M. ISSABEKOV ◽  
Dinara M. AMANBEKOVA

The territory of Kazakhstan is located in the center of the continent of Eurasia and has a considerable area of 272.5 million ha. This geographical position predetermines a great variety of species of flora and fauna. This research presents the results of studies of the current state of vegetation of the high mountain valley Kok Zhailau, located in the central part of the Ile (Zailiysky) Alatau ridge (Northern Tian Shan), in different modes of its economic use and protection. In the process of the field survey of the territory, classical methods of route floristic and geo-botanical studies were used. The spatial structure and current state of vegetation was studied using methods of detailed path research. A brief description of distribution of the main types of vegetation in high altitude zones was provided. Particular attention is paid to the analysis of coniferous forests from relict spruce Schrenka or Tian Shan (Picea schrenkiana Fisch & C.A. Mey). Recommendations were given on the protection of vegetation and the conservation of biodiversity in the face of an increasing anthropogenic impact, in connection with the proximity of the territory to the metropolis of Almaty. The survey demonstrated that, in general, the vegetation cover in the Kok Zhailau valley was to some extent transformed, and in its natural (background) state it was preserved only in hard-to-reach areas, mainly in the upper part of the mountains (steep slopes of the Kumbel ridge, river valleys, etc.).

Author(s):  
Zuzana Ballová ◽  
Marián Janiga

High mountain areas are an appropriate indicator of anthropogenic lead (Pb), which can reach the remote mountain ranges through long distance atmospheric transport. We compared the content of Pb in ecologically equivalent rodent species from Tian-Shan with European mountain ranges Tatra, Vitosha and Rila mountains. We used bone tissues from terminal tail vertebrae of small rodents for detection of Pb levels by using electrothermal atomic absorption spectroscopy (AAS). The tail bones of Tian-Shan rodents had significantly lower Pb levels than snow voles from Tatra mountains, but there was no significant difference in comparison with Vitosha and Rila mountains. We can conclude that Tian-Shan shows lower pollution by Pb than Tatra mountains, what may be a reason of longer lasting industrialization of north-western Europe and strongly prevailing west winds in Tatra mountains.


2021 ◽  
Vol 12 ◽  
pp. 215013272110167
Author(s):  
Tara Rava Zolnikov ◽  
Tanya Clark ◽  
Tessa Zolnikov

Anxiety and fear felt by people around the world regarding the coronavirus pandemic is real and can be overwhelming, resulting in strong emotional reactions in adults and children. With depressive and anxiety disorders already highly prevalent in the general population (300 million worldwide), depression and/or anxiety specifically because of the pandemic response is likely. Moreover, the current state of panic in the face of uncertainty is apt to produce significant amounts of stress. While this situation has the potential to cause psychological disorders in previously unaffected populations, perhaps more impactful is the exacerbation of symptoms of many existing disorders including anxiety, depression, post-traumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD) and hoarding disorder.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 616
Author(s):  
Jie Gao ◽  
Xuguang Tang ◽  
Shiqiu Lin ◽  
Hongyan Bian

The ecosystem services (ESs) provided by mountain regions can bring about benefits to people living in and around the mountains. Ecosystems in mountain areas are fragile and sensitive to anthropogenic disturbance. Understanding the effect of land use change on ESs and their relationships can lead to sustainable land use management in mountain regions with complex topography. Chongqing, as a typical mountain region, was selected as the site of this research. The long-term impacts of land use change on four key ESs (i.e., water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ)) and their relationships were assessed from the past to the future (at five-year intervals, 1995–2050). Three future scenarios were constructed to represent the ecological restoration policy and different socioeconomic developments. From 1995 to 2015, WY and SC experienced overall increases. CS and HQ increased slightly at first and then decreased significantly. A scenario analysis suggested that, if the urban area continues to increase at low altitudes, by 2050, CS and HQ are predicted to decrease moderately. However, great improvements in SC, HQ, and CS are expected to be achieved by the middle of the century if the government continues to make efforts towards vegetation restoration on the steep slopes.


2021 ◽  
Vol 11 (5) ◽  
pp. 2068
Author(s):  
William Villegas-Ch. ◽  
Xavier Palacios-Pacheco ◽  
Milton Roman-Cañizares ◽  
Sergio Luján-Mora

Currently, the 2019 Coronavirus Disease pandemic has caused serious damage to health throughout the world. Its contagious capacity has forced the governments of the world to decree isolation and quarantine to try to control the pandemic. The consequences that it leaves in all sectors of society have been disastrous. However, technological advances have allowed people to continue their different activities to some extent while maintaining isolation. Universities have great penetration in the use of technology, but they have also been severely affected. To give continuity to education, universities have been forced to move to an educational model based on synchronous encounters, but they have maintained the methodology of a face-to-face educational model, what has caused several problems in the learning of students. This work proposes the transition to a hybrid educational model, provided that this transition is supported by data analysis to identify the new needs of students. The knowledge obtained is contrasted with the performance presented by the students in the face-to-face modality and the necessary parameters for the transition to this modality are clearly established. In addition, the guidelines and methodology of online education are considered in order to take advantage of the best of both modalities and guarantee learning.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 438
Author(s):  
Jose Luis Diaz-Hernandez ◽  
Antonio Jose Herrera-Martinez

At present, there is a lack of detailed understanding on how the factors converging on water variables from mountain areas modify the quantity and quality of their watercourses, which are features determining these areas’ hydrological contribution to downstream regions. In order to remedy this situation to some extent, we studied the water-bodies of the western sector of the Sierra Nevada massif (Spain). Since thaw is a necessary but not sufficient contributor to the formation of these fragile water-bodies, we carried out field visits to identify their number, size and spatial distribution as well as their different modelling processes. The best-defined water-bodies were the result of glacial processes, such as overdeepening and moraine dams. These water-bodies are the highest in the massif (2918 m mean altitude), the largest and the deepest, making up 72% of the total. Another group is formed by hillside instability phenomena, which are very dynamic and are related to a variety of processes. The resulting water-bodies are irregular and located at lower altitudes (2842 m mean altitude), representing 25% of the total. The third group is the smallest (3%), with one subgroup formed by anthropic causes and another formed from unknown origin. It has recently been found that the Mediterranean and Atlantic watersheds of this massif are somewhat paradoxical in behaviour, since, despite its higher xericity, the Mediterranean watershed generally has higher water contents than the Atlantic. The overall cause of these discrepancies between watersheds is not connected to their formation processes. However, we found that the classification of water volumes by the manners of formation of their water-bodies is not coherent with the associated green fringes because of the anomalous behaviour of the water-bodies formed by moraine dams. This discrepancy is largely due to the passive role of the water retained in this type of water-body as it depends on the characteristics of its hollows. The water-bodies of Sierra Nevada close to the peak line (2918 m mean altitude) are therefore highly dependent on the glacial processes that created the hollows in which they are located. Slope instability created water-bodies mainly located at lower altitudes (2842 m mean altitude), representing tectonic weak zones or accumulation of debris, which are influenced by intense slope dynamics. These water-bodies are therefore more fragile, and their existence is probably more short-lived than that of bodies created under glacial conditions.


2001 ◽  
Vol 1 ◽  
pp. 609-611 ◽  
Author(s):  
Joan O. Grimalt ◽  
Pilar Fernandez ◽  
Rosa M. Vilanova

High mountain areas have recently been observed to be polluted by organochlorine compounds (OC) despite their isolation. These persistent pollutants arrive at these remote regions through atmospheric transport. However, the mechanisms involving the accumulation of these compounds from the atmospheric pool to the lacustrine systems still need to be elucidated. These mechanisms must be related to the processes involving the transfer of these pollutant from low to high latitudes[1] as described in the global distillation effect[2].


2017 ◽  
Vol 43 (2) ◽  
pp. 417-431 ◽  
Author(s):  
Nicola Colombo ◽  
Luigi Sambuelli ◽  
Cesare Comina ◽  
Chiara Colombero ◽  
Marco Giardino ◽  
...  

2010 ◽  
Vol 215 (1-4) ◽  
pp. 655-666 ◽  
Author(s):  
Roberto Quiroz ◽  
Joan O. Grimalt ◽  
Pilar Fernandez ◽  
Lluis Camarero ◽  
Jordi Catalan ◽  
...  

2021 ◽  
Vol 15 (12) ◽  
pp. 5765-5783
Author(s):  
Lu Gao ◽  
Haijun Deng ◽  
Xiangyong Lei ◽  
Jianhui Wei ◽  
Yaning Chen ◽  
...  

Abstract. The phenomenon in which the warming rate of air temperature is amplified with elevation is termed elevation-dependent warming (EDW). It has been clarified that EDW can accelerate the retreat of glaciers and melting of snow, which can have significant impacts on the regional ecological environment. Owing to the lack of high-density ground observations in high mountains, there is widespread controversy regarding the existence of EDW. Current evidence is mainly derived from typical high-mountain regions such as the Swiss Alps, the Colorado Rocky Mountains, the tropical Andes and the Tibetan Plateau–Himalayas. Rare evidence in other mountain ranges has been reported, especially in arid regions. In this study, EDW features (regional warming amplification and altitude warming amplification) in the Chinese Tian Shan (CTM) were detected using a unique high-resolution (1 km, 6-hourly) air temperature dataset (CTMD) from 1979 to 2016. The results showed that there were significant EDW signals at different altitudes on different timescales. The CTM showed significant regional warming amplification in spring, especially in March, and the warming trends were greater than those of continental China with respect to three temperatures (minimum temperature, mean temperature and maximum temperature). The significance values of EDW above different altitude thresholds are distinct for three temperatures in 12 months. The warming rate of the minimum temperature in winter showed a significant elevation dependence (p<0.01), especially above 3000 m. The greatest altitudinal gradient in the warming rate of the maximum temperature was found above 4000 m in April. For the mean temperature, the warming rates in June and August showed prominent altitude warming amplification but with different significance above 4500 m. Within the CTM, the Tolm Mountains, the eastern part of the Borokoonu Mountains, the Bogda Mountains and the Balikun Mountains are representative regions that showed significant altitude warming amplification on different timescales. This new evidence could partly explain the accelerated melting of snow in the CTM, although the mechanisms remain to be explored.


Sign in / Sign up

Export Citation Format

Share Document