Tensile and Liquid Absorption Properties of Polyester-based Composites as Alternative Marble Materials

2021 ◽  
Vol 19 (12) ◽  
pp. 55-68
Author(s):  
Lamees Khalaf ◽  
Israa. Ghazi

Three polyester-based composite materials were prepared with different volume fractions of three types of fillers (i.e. cement, gypsum and limestone) with the aim of improving the tensile and liquid absorption properties of the former for the synthetic marble industry. The tensile strength, modulus of elasticity, toughness, ductility and liquid absorption percentage of the composites were characterized. Results revealed an increase in the modulus of elasticity, tensile strength and toughness of all prepared composites, as well as a decrease in their ductility, with increasing filler amount. The liquid absorption values of all composites increased with increasing filler content. The composites were able to absorb water extensively but absorbed benzene, kerosene and gasoil minimally.

2012 ◽  
pp. 189-198 ◽  
Author(s):  
Jelena Petrovic ◽  
Darko Ljubic ◽  
Marina Stamenovic ◽  
Ivana Dimic ◽  
Slavisa Putic

The significance of composite materials and their applications are mainly due to their good properties. This imposes the need for their recycling, thus extending their lifetime. Once used composite material will be disposed as a waste at the end of it service life. After recycling, this kind of waste can be used as raw materials for the production of same material, which raises their applicability. This indicates a great importance of recycling as a method of the renowal of composite materials. This study represents a contribution to the field of mechanical properties of the recycled composite materials. The tension mechanical properties (tensile strength and modulus of elasticity) of once used and disposed glass-epoxy composite material were compared before and after the recycling. The obtained results from mechanical tests confirmed that the applied recycling method was suitable for glass-epoxy composite materials. In respect to the tensile strength and modulus of elasticity it can be further assessed the possibility of use of recycled glass-epoxy composite materials.


2015 ◽  
Vol 754-755 ◽  
pp. 161-165
Author(s):  
Nurul Fatin Syazwani binti Arshad ◽  
Salmah Husseinsyah ◽  
Lim Bee Ying

This research focused on the utilization of kapok husk (KH) as filler in low linear density polyethylene (LLDPE). The effect of filler content on tensile properties and morphology of LLDPE/KH eco-composites were investigated. The eco-composites were prepared by using Brabender Plasticiser EC Plus at temperature 160 °C and rotor speed 50 rpm. The results indicated that the tensile strength and elongation at break decreased with KH content increased. However, the modulus of elasticity increased with increasing of KH content. The morphology study of eco-composites exhibit poor interfacial adhesion between KH and LLDPE.


2016 ◽  
Vol 47 (1) ◽  
pp. 20-37 ◽  
Author(s):  
Rashid Masood ◽  
Tanveer Hussain ◽  
Mohsen Miraftab ◽  
Azeem Ullah ◽  
Zulfiqar Ali Raza ◽  
...  

Alginate/psyllium and alginate/chitosan fibers have great potential for wound-care applications. However, alginate/psyllium fibers have poor tensile strength and alginate/chitosan fibers comparatively have low liquid absorption properties. The main aim was to develop a tri-component fiber with comparatively better tensile strength and liquid absorption properties using three different natural polysaccharides. Alginate, chitosan, and psyllium composite fibers were made by using two different coagulation bath compositions. In method A, psyllium-containing sodium alginate dope solution was extruded into a bath containing CaCl2 and subsequently passed through hydrolyzed chitosan bath, whereas in method B: psyllium-containing sodium alginate dope solution was directly extruded into hydrolyzed chitosan and subsequently passed through CaCl2 bath. The produced fibers were rinsed using 25–100% acetone solutions and dried in air. Tensile, antibacterial, swelling, and absorption properties of these fibers were measured. The study showed that homogeneous fibers can be extruded by using both methods. The fibers produced showed good antibacterial, absorption, and swelling properties. Antibacterial activity of the controlled and composite fibers was more or less the same. However, tensile properties of fibers produced by method A and method B were less than the control alginate–chitosan fibers. The composite fibers produced by method A showed better absorption of saline and solution A than control fiber and composite fibers produced by method B. Therefore, method A is recommended for producing the psyllium-containing alginate chitosan fibers for wound-dressing applications. The fibers produced by this method showed comparable tensile and antibacterial properties, superior absorbency, and swelling properties.


2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


2015 ◽  
Vol 659 ◽  
pp. 659-665
Author(s):  
Supakit Chuaping ◽  
Thomas Mann ◽  
Rapeephun Dangtungee ◽  
Suchart Siengchin

The topic of this research work was to demonstrate the feasibility of a 3D-MID concept using injection molding technique and investigate the effects of two weld line types on the structure and mechanical properties such as tensile, flexural strength and morphology. In order to obtain more understanding of the bonds between polymer and metals, two different polymer bases of polyphthalamide (PPA) with the same type and amount of filler content were produced by injection molding at the different processing conditions. A mold was designed in such a way that weld and meld line can be produced with different angles by changing as insert inside of the mold. The mechanical properties such as stiffness, tensile strength and flexural strength were determined in tensile and flexural tests, respectively. The results showed in line with the expectation of high reduction on mechanical properties in area where weld/meld lines occurred. The result of tensile test was clearly seen that weld and meld line showed a considerable influence on mechanical properties. The reduction in tensile strength was approximately 58% according to weld line types, whereas in flexural strength was approximately 62%. On the other hand, the effect of the injection times and mold temperatures on the tensile strength were marginal.


2021 ◽  
Vol 887 ◽  
pp. 110-115
Author(s):  
G.A. Sabirova ◽  
R.R. Safin ◽  
N.R. Galyavetdinov

This paper presents the findings of experimental studies of the physical and mechanical properties of wood-filled composites based on polylactide (PLA) and vegetable filler in the form of wood flour (WF) thermally modified at 200-240 °C. It also reveals the dependence of the tensile strength, impact strength, bending elastic modulus, and density of composites on the amount of wood filler and the temperature of its thermal pre-modification. We established that an increase in the concentration of the introduced filler and the degree of its heat treatment results in a decrease of the tensile strength, impact strength and density of composite materials, while with a lower binder content, thermal modification at 200 °C has a positive effect on bending elastic modulus. We also found that 40 % content of a wood filler heated to 200 °C is sufficient to maintain relatively high physical and mechanical properties of composite materials. With a higher content of a wood filler, the cost can be reduced but the quality of products made of this material may significantly deteriorate. However, depending on the application and the life cycle of this product, it is possible to develop a formulation that includes a high concentration of filler.


2021 ◽  
Vol 879 ◽  
pp. 284-293
Author(s):  
Norliana Bakar ◽  
Siew Choo Chin

Fiber Reinforced Polymer (FRP) made from synthetic fiber had been widely used for strengthening of reinforced concrete (RC) structures in the past decades. Due to its high cost, detrimental to the environment and human health, natural fiber composites becoming the current alternatives towards a green and environmental friendly material. This paper presents an investigation on the mechanical properties of bamboo fiber reinforced composite (BFRC) with different types of resins. The BFRC specimens were prepared by hand lay-up method using epoxy and vinyl-ester resins. Bamboo fiber volume fractions, 30%, 35%, 40%, 45% and 50% was experimentally investigated by conducting tensile and flexural test, respectively. Results showed that the tensile and flexural strength of bamboo fiber reinforced epoxy composite (BFREC) was 63.2% greater than the bamboo fiber reinforced vinyl-ester composite (BFRVC). It was found that 45% of bamboo fiber volume fraction on BFREC exhibited the highest tensile strength compared to other BFRECs. Meanwhile, 40% bamboo fiber volume fraction of BFRVC showed the highest tensile strength between bamboo fiber volume fractions for BFRC using vinyl-ester resin. Studies showed that epoxy-based BFRC exhibited excellent results compared to the vinyl-ester-based composite. Further studies are required on using BFRC epoxy-based composite in various structural applications and strengthening purposes.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 7954-7964
Author(s):  
Diego Gomez-Maldonado ◽  
Maria Soledad Peresin ◽  
Christina Verdi ◽  
Guillermo Velarde ◽  
Daniel Saloni

As the additive manufacturing process gains worldwide importance, the need for bio-based materials, especially for in-home polymeric use, also increases. This work aims to develop a composite of polylactic acid (PLA) and nanofibrillated cellulose (NFC) as a sustainable approach to reinforce the currently commercially available PLA. The studied materials were composites with 5 and 10% NFC that were blended and extruded. Mechanical, structural, and thermal characterization was made before its use for 3D printing. It was found that the inclusion of 10% NFC increased the modulus of elasticity in the filaments from 2.92 to 3.36 GPa. However, a small decrease in tensile strength was observed from 55.7 to 50.8 MPa, which was possibly due to the formation of NFC aggregates in the matrix. This work shows the potential of using PLA mixed with NFC for additive manufacturing.


2021 ◽  
Author(s):  
Xiao-jian Wang ◽  
Liang-Bi Wang

Abstract The most common non-granular fillers are sheet and fiber. When they are distributed along the heat flux direction, the thermal conductivity of composite increases greatly. Meanwhile, the filler contact also has large effect on the thermal conductivity. However, the effect of filler contact on the thermal conductivity of composite with directional fillers has not been investigated. In this paper, the combined effects of filler contact, content and orientation are investigated. The results show that the effect of filler orientation on the thermal conductivity is greater than filler contact in low filler content, and exact opposite in high filler content. The effect of filler contact on fibrous and sheet fillers is far greater than cube and sphere fillers. This rule is affected by the filler contact. The filler content of 8% is the ideal percolation threshold of composite with fibrous and sheet filler. It is lower than cube filler and previous reports. The space for thermal conductivity growth of composite with directional filler is still very large. The effect of interfacial thermal resistance should be considered in predicting the thermal conductivity of composite under high Rc (>10-4).


Sign in / Sign up

Export Citation Format

Share Document