Mercury Determination Using Stannous Chloride Reductant Followed by Atomic Absorption Spectrometric Measurement: Performance Characteristics, Uncertainty Estimation, and Compliance Assessment

Author(s):  
Yohanes Susanto Ridwan ◽  
Tiny Agustina Koesmawati ◽  
Anna Edy Persulessy ◽  
Raden Tina Rosmalina ◽  
Astried Sunaryani ◽  
...  

Indonesian government has committed to reduce and eliminate mercury. Hence, the intensity of monitoring activities of mercury levels in various matrices would be increased and supported by qualified analytical data. Key characteristic performances, i.e., the limit of detection, linear range, precision, trueness, have been successfully carried out, and the method was shown to fit the purpose. The limit detection, LoD and LoQ, were found to be 0.26 and 0.86 µg/L, respectively, which were adequate to reach the tightest regulatory limit of mercury in surface water (1 µg/L). The examined linearity range of 1-20 µg/L has been found sufficient for its application since a high mercury concentration in the typical sample is seldomly expected. Precision and trueness aspects of the method were shown to have satisfaction performance, with CV of 1,24% and recovery of 104.54%. All the possible uncertainty sources have been identified in this study. Since no reference material was available, the uncertainty of bias was evaluated through the recovery of the spiked sample. Compliance assessment to six measurement results has been performed; one result was below LoQ, four were clearly below regulatory limit, and one was questionable. Hence a decision rule was applied.

2018 ◽  
Vol 9 (4) ◽  
pp. 314-324
Author(s):  
A. A. Barinov ◽  
V. G. Glavny ◽  
S. M. Dmitriev ◽  
M. A. Legchanov ◽  
A. V. Ryazanov ◽  
...  

The well-known method of spatial conductometry is widely used for hydrodynamical investigations in the frame of validation benchmarks. The aim of the work was to develop the method of representativeness substantiation for use of the conductometric sensors in single-phase applications.The paper presents aspects of wire-mesh sensors (WMS) applications in non-uniform conductivity fields. The equivalent electrical circuits for the measurement cell and WMS are proposed and investigated. The methods of translation from measured conductance to conductivity of the water are discussed. Decomposition of the uncertainty sources and their propagation through measurements are investigated.To obtain the «cross-talk» effect of the measurements the fi model of WMS fl domain was created. The results of calculations showed the dependence of the measurement results on the conductivity contrast in the cells as well as on the size of the contrast domain. The proposed method of the measurement uncertainty estimate was applied to the real WMS and it’s measurement system. The obtained results are topical for validation tests with the use of tracer methods and WMS.


2018 ◽  
Vol 14 (2) ◽  
pp. 172-177
Author(s):  
Joko Sudarsono ◽  
Setyo Sri Rahardjo ◽  
Kisrini Kisrini

The use of the pesticide which does not follow the procedure may potentially cause residue of pesticide to be left on vegetables and fruits sold in supermarkets and traditional markets. We aimed to find the pattern of pesticide usage and levels of residue found in plants. This study was an analytical observation with a cross-sectional design using detailed sampling procedure. We obtained the data of the pesticide residue concentration by conducting laboratory examinations on eight samples of cabbage and eight samples of tomatoes from traditional markets and supermarkets in the city of Solo. The data were tested using simple linear regression testing. The organophosphate measurement results showed no residues were detected, because it was below the Limit of Detection (LOD). We concluded that pesticides containing active substances were not used in the vegetables we tested or the active substances were no longer contained in the vegetables after harvesting.


2018 ◽  
Vol 4 (2) ◽  
pp. 168-173
Author(s):  
Irdhawati Irdhawati ◽  
Rosanti Suryani Tince Mbatu ◽  
Emmy Sahara

Pakcoy is one of the most popular vegetable. The use of synthetic fertilizers and pesticides contain heavy metals can contaminate pakcoy vegetable. This research aims to determine the validity of measurements and concentration of Fe in pakcoy using differential pulse anodic stripping voltammetry technique.The working, reference, and counter electrodes were platinum disk, Ag/AgCl, and Pt wire, respectively. The optimum measurement results of the standard solutions of Fe(III) obtained the optimum deposition time was 70 seconds, the optimum scan rate was 10 mV/s, and the optimum deposition potential at -0.47 V. A linear concentration of standard solution of Fe(III) observed at the range of 50 ppb~500 ppb, with correlation coefficient 0.9954. Limit of detection was 50.18 ppb. The repetition of 10 times measurements had a Horwitz ratio of less than 2. Percent recovery was 100.26% ± 0.27%. The average of Fe(III) concentration in the samples from 5 (five) locations of the pakcoy sampling contains 3.82±0.29 ppm, less than SNI treshold line of 5.0 ppm.  


Author(s):  
Margaretha de Vos ◽  
Lesley Scott ◽  
Anura David ◽  
Andre Trollip ◽  
Harald Hoffmann ◽  
...  

Failure to rapidly identify drug-resistant tuberculosis (TB) increases the risk of patient mismanagement, the amplification of drug resistance and ongoing transmission. We generated comparative analytical data for four automated assays for detection of TB and multidrug-resistant (MDR) TB: Abbott RealTime MTB and MTB RIF/INH (Abbott), Hain Lifescience FluoroType® MTBDR (Hain), BD MAX™ MDR-TB (BD) and Roche cobas® MTB and MTB-RIF/INH (Roche). We included Xpert MTB/RIF (Xpert) and GenoType MTBDRplus as comparators for TB and drug resistance detection, respectively. We assessed analytical sensitivity for the detection of Mycobacterium tuberculosis complex using inactivated strains (M. tuberculosis H37Rv and M. bovis) spiked into TB-negative sputa and computed the 95% limit of detection (LOD95). We assessed the accuracy for rifampicin and isoniazid resistance detection using well characterized M. tuberculosis strains with high-confidence mutations accounting for >85% of first-line resistance mechanisms globally. For H37Rv and M. bovis, respectively, we measured LOD95 values of 3,781 and 2,926 (Xpert); 322 and 2,182 (Abbott); 826 and 4,301 (BD); 10,398 and 23,139 (Hain); 2,416 and 2,136 (Roche) genomes/mL. Assays targeting multi-copy genes or targets (Abbott, BD and Roche) showed increased analytical sensitivity compared to Xpert. Quantification of the panel by quantitative real-time PCR prevents the determination of absolute values and results reported here can only be interpreted for comparison purposes. All assays showed accuracy comparable to Genotype MTBDRplus for the detection of rifampicin and isoniazid resistance. The data from this analytical study suggest that the assays may have similar clinical performance to WHO-recommended molecular TB and MDR-TB assays.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 452 ◽  
Author(s):  
Ewelina Patyra ◽  
Monika Przeniosło-Siwczyńska ◽  
Krzysztof Kwiatek

A new multi-residue method for the analysis of sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfaguanidine and sulfamethoxazole) in non-target feeds using high-performance liquid chromatography-fluorescence detection (HPLC-FLD) and precolumnderivatization was developed and validated. Sulfonamides (SAs) were extracted from feed with an ethyl acetate/methanol/acetonitrile mixture. Clean-up was performed on a Strata-SCX cartridge. The HPLC separation was performed on a Zorbax Eclipse XDB C18 column with a gradient mobile phase system of acetic acid, methanol, and acetonitrile. The method was validated according to EU requirements (Commission Decision 2002/657/EC). Linearity, decision limit, detection capability, detection and quantification limits, recovery, precision, and selectivity were determined, and adequate results were obtained. Using the HPLC-FLD method, recoveries were satisfactory (79.3–114.0%), with repeatability and reproducibility in the range of 2.7–9.1% to 5.9–14.9%, respectively. Decision limit (CCα) and detection capability (CCβ) were 197.7–274.6 and 263.2–337.9 µg/kg, respectively, and limit of detection (LOD) and limit of quantification (LOQ) were 34.5–79.5 and 41.3–89.9 µg/kg, respectively, depending on the analyte. Results showed that this analytical procedure is simple, rapid, sensitive, and suitable for the routine control of feeds.


Author(s):  
Chu-An Yang ◽  
Hsiu-Chuan Liu ◽  
Ray H Liu ◽  
Dong-Liang Lin ◽  
Shu-Pao Wu

Abstract Abuse of new psychoactive substances (NPS) has become a health and social issue of global concern. p-Methoxyamphetamine (PMA)/p-methoxymethamphetamine (PMMA) with fluoro- or chloro-derivatives of amphetamine and methamphetamine were among the most common drugs found in specimens from fatal cases in Taiwan during the January 2011 to December 2018 period. A liquid–liquid extraction sample preparation protocol with highly sensitive ultra-high performance liquid chromatography–tandem mass spectrometry approach was developed for the simultaneous analysis of seven phenethylamine-type drugs—PMA, PMMA, p-methoxyethylamphetamine, 4-fluoroamphetamine (4-FA), 4-fluoromethamphetamine (4-FMA), 4-chloroamphetamine (4-CA) and 4-chloromethamphetamine (4-CMA)—in postmortem blood and urine specimens. Separation by liquid chromatography was performed by Agilent Zorbax SB-Aq column. Tandem mass spectrometry was operated in Agilent Jet Stream Technology electrospray ionization in positive-ion multiple reaction monitoring mode. An analytical methodology was evaluated using drug-free blood and urine after fortification with 100–2,000 ng/mL of the seven target analytes. Average extraction recoveries were >80%; slightly higher ion suppression was observed for PMA and 4-CA; intra-/inter-day precision (% coefficient of variation) and accuracy were in the ranges of 0.52–12.3% and 85–110%, respectively. Limit of detection and lower limit of quantitation for these seven analytes were both in the 0.5–5 ng/mL range. Interference and carryover were not significant. This relatively simple methodology was found effective and reliable for routine identification and quantitation of these seven analytes in postmortem and antemortem blood and urine specimens received in 2018. Analytical data obtained from these actual cases indicated the following: (i) compared to findings reported during the 2007–2011 period, the use of substituted phenethylamine-type drugs decreased in 2018; (ii) ketamine and 7-aminonimetazepam (the main metabolite of nimetazepam) were the most common co-ingested substances in specimens containing PMA/PMMA, 4-FA/4-FMA, or 4-CA/4-CMA; and (iii) in drug fatalities, the concentration of PMA was significantly higher than the concentration of PMMA in both urine and blood, while the reverse was true in urine specimens from antemortem cases.


2016 ◽  
Vol 99 (5) ◽  
pp. 1173-1184 ◽  
Author(s):  
Krista Thomas ◽  
Dominik Wechsler ◽  
Yi-Min Chen ◽  
Sheila Crain ◽  
Michael A Quilliam

Abstract The implementation of instrumental analytical methods such as LC-MS for routine monitoring of toxins requires the availability of accurate calibration standards. This is a challenge because many toxins are rare, expensive, dangerous to handle, and/or unstable, and simple gravimetric procedures are not reliable for establishing accurate concentrations in solution. NMR has served as one method of qualitative and quantitative characterization of toxin calibration solution Certified Reference Materials (CRMs). LC with chemiluminescence N detection (LC-CLND) was selected as a complementary method for comprehensive characterization of CRMs because it provides a molar response to N. Here we report on our investigation of LC-CLND as a method suitable for quantitative analysis of nitrogenous toxins. It was demonstrated that a wide range of toxins could be analyzed quantitatively by LC-CLND. Furthermore, equimolar responses among diverse structures were established and it was shown that a single high-purity standard such as caffeine could be used for instrument calibration. The limit of detection was approximately 0.6 ng N. Measurement of several of Canada's National Research Council toxin CRMs with caffeine as the calibrant showed precision averaging 2% RSD and accuracy ranging from 97 to 102%. Application of LC-CLND to the production of calibration solution CRMs and the establishment of traceability of measurement results are presented.


2018 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Yeni Maulidah Muflihah ◽  
Heny Masruroh ◽  
Zulfikar Zulfikar

<p>The presence of aspartic acid, glutamic acid and arginine in solution can be detected by potentiometric method using tungsten oxide electrode in a batch system. Characterization of tungsten oxide electrode used include linear range, limit of detection, sensitivity and reproducibility. Buffer type and concentration effect also studied to optimize the measurement results. Optimum conditions for detecting arginine was at pH 6.0 with a phosphate buffer concentration of 0.5 x 10<sup>-3</sup> M. Correlation coefficient was obtained for 0.9864, the detection limit of 5.24 x 10<sup>-6</sup> M, sensitivity 16.1 mV/decade with reproducibility 0 –7 %. Glutamic acid has a correlation coefficient of 0.9789, the detection limit of 3.80 x 10<sup>-6</sup> M, the sensitivity of 9.2 mV/decade and reproducibility of 0 – 6 %. Aspartic acid has a correlation coefficient of 0.9949, the detection limit of 7.76 x 10<sup>-6</sup> M, sensitivity of 13.4 mV/decade and reproducibility of 0 – 5 %.</p>


2013 ◽  
Vol 8 (1) ◽  
pp. 32-42
Author(s):  
Paulo M. Moreira e Silva ◽  
Fernando Rangel de Sousa

We present in this paper the analysis, design and measurement results of a low noise amplifier (LNA) operating in the ISM band at 2.45 GHz. The circuit topology adopted was based on a current reuse technique to minimize the power consumption. A prototype was fabricated in a 0.18-μm standard CMOS technology and the measured power consumption was 1.1 mW. The measured input reflection coefficient was below -10 dB and the reverse isolation was higher than 20 dB. The measured insertion gain and noise figure were 5.6 dB and 4.8 dB respectively, with divergences from the simulated values of 5 dB and 2 dB, respectively. To explain these discrepancies, we devised an analysis on the circuit, including sources of uncertainties. Moreover, we characterized a transistor included in the LNA die, that helped to explain part of the disagreements. After including the uncertainty sources, we wereaable to explain a deviation of 3.9 dB in the insertion gain with respect to the simulated result.


1966 ◽  
Vol 49 (6) ◽  
pp. 1166-1169
Author(s):  
George Yip ◽  
Samuel F Howard

Abstract Four dinitrophenol pesticides, DNOC, DNBP, DNAP, and DNOCHP, can be separated on cellulose thin layer plates, either as the phenols or their methyl ethers. Methyl ethers are prepared by reaction with diazomethane. Partition chromatography between an immobile phase of mineral oil and a mobile aqueous phase gives complete resolution. The compounds are revealed by spraying first with stannous chloride, then with p-dimethylaminobenzaldehyde to yield yellow-orange spots which fluoresce under UV light. The lower limit of detection in the phenolic form varies with the compound, ranging from 0.05 μg for DNOC to 0.3 μg for DNOCHP. The lower limit for the ethers is the same for all compounds, 0.1 pg.


Sign in / Sign up

Export Citation Format

Share Document