Integrating deep learning, social networks, and big data for healthcare system

2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Mohammed Anouar Naoui ◽  
Brahim Lejdel ◽  
Mouloud Ayad ◽  
Riad Belkeiri ◽  
Abd Sattar Khaouazm

AbstractThis paper aims to propose a deep learning model based on big data for the healthcare system to predict social network data. Social network users post large amounts of healthcare information on a daily basis and at the same time hospitals and medical laboratories store very large amounts of healthcare data, such as X-rays. The authors provide an architecture that can integrate deep learning, social networks, and big data. Deep learning is one of the most challenging areas of research and is becoming increasingly popular in the health sector. It uses deep analysis to extract knowledge with optimum precision. The proposed architecture consists of three layers: the deep learning layer, the big data layer, and the social networks layer. The big data layer includes data for health care, such as X-ray images. For the deep learning layer, three Convolution Neuronal Network models are proposed for X-ray image classification. As a result, social network layer users can access the proposed system to predict their X-ray image posts.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Nishimori ◽  
Kunihiko Kiuchi ◽  
Kunihiro Nishimura ◽  
Kengo Kusano ◽  
Akihiro Yoshida ◽  
...  

AbstractCardiac accessory pathways (APs) in Wolff–Parkinson–White (WPW) syndrome are conventionally diagnosed with decision tree algorithms; however, there are problems with clinical usage. We assessed the efficacy of the artificial intelligence model using electrocardiography (ECG) and chest X-rays to identify the location of APs. We retrospectively used ECG and chest X-rays to analyse 206 patients with WPW syndrome. Each AP location was defined by an electrophysiological study and divided into four classifications. We developed a deep learning model to classify AP locations and compared the accuracy with that of conventional algorithms. Moreover, 1519 chest X-ray samples from other datasets were used for prior learning, and the combined chest X-ray image and ECG data were put into the previous model to evaluate whether the accuracy improved. The convolutional neural network (CNN) model using ECG data was significantly more accurate than the conventional tree algorithm. In the multimodal model, which implemented input from the combined ECG and chest X-ray data, the accuracy was significantly improved. Deep learning with a combination of ECG and chest X-ray data could effectively identify the AP location, which may be a novel deep learning model for a multimodal model.


Author(s):  
A S Mukhin ◽  
I A Rytsarev ◽  
R A Paringer ◽  
A V Kupriyanov ◽  
D V Kirsh

The article is devoted to the definition of such groups in social networks. The object of the study was selected data social network Vk. Text data was collected, processed and analyzed. To solve the problem of obtaining the necessary information, research was conducted in the field of optimization of data collection of the social network Vk. A software tool that provides the collection and subsequent processing of the necessary data from the specified resources has been developed. The existing algorithms of text analysis, mainly of large volume, were investigated and applied.


In this paper we analyze big data analytic & Deep Learning is not supposing as two entire various concept. BigData mean extreme simple larger data into set in that may be analyzes as finding into pattern, trend. The first techniques in that may useful with data analyzed therefore in capable to helping to finding abstract pattern into Big Data is DeepLearning. It is applying into DeepLearning into Big Data, it can be find out nameless & useful pattern in that not possible up to now. This is technique as present into extra active areas into researches in the medical sciences. From increases sizes & complex into medical data’s such as X-ray, deeplearning gain into small success to prediction as several diseases such as pneumonia, diabetes. The project is proposed into two deeplearning model used to Keras & too we can be building in a regression models in to predicted as employee pay per hour, & we are builds in a classifications models in predict when it is na patient have been diabetes.


Author(s):  
Mark Alan Underwood

Intranets are almost as old as the concept of a web site. More than twenty-five years ago the text Business Data Communications closed with a discussion of intranets (Stallings, 1990). Underlying technology improvements in intranets have been incremental; intranets were never seen as killer developments. Yet the popularity of Online Social Networks (OSNs) has led to increased interest in the part OSNs play – or could play – in using intranets to foster knowledge management. This chapter reviews research into how social graphs for an enterprise, team or other collaboration group interacts with the ways intranets have been used to display, collect, curate and disseminate information over the knowledge life cycle. Future roles that OSN-aware intranets could play in emerging technologies, such as process mining, elicitation methods, domain-specific intelligent agents, big data, and just-in-time learning are examined.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Kefei Cheng ◽  
Xiaoyong Guo ◽  
Xiaotong Cui ◽  
Fengchi Shan

The recommendation algorithm can break the restriction of the topological structure of social networks, enhance the communication power of information (positive or negative) on social networks, and guide the information transmission way of the news in social networks to a certain extent. In order to solve the problem of data sparsity in news recommendation for social networks, this paper proposes a deep learning-based recommendation algorithm in social network (DLRASN). First, the algorithm is used to process behavioral data in a serializable way when users in the same social network browse information. Then, global variables are introduced to optimize the encoding way of the central sequence of Skip-gram, in which way online users’ browsing behavior habits can be learned. Finally, the information that the target users’ have interests in can be calculated by the similarity formula and the information is recommended in social networks. Experimental results show that the proposed algorithm can improve the recommendation accuracy.


COVID ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 403-415
Author(s):  
Abeer Badawi ◽  
Khalid Elgazzar

Coronavirus disease (COVID-19) is an illness caused by a novel coronavirus family. One of the practical examinations for COVID-19 is chest radiography. COVID-19 infected patients show abnormalities in chest X-ray images. However, examining the chest X-rays requires a specialist with high experience. Hence, using deep learning techniques in detecting abnormalities in the X-ray images is presented commonly as a potential solution to help diagnose the disease. Numerous research has been reported on COVID-19 chest X-ray classification, but most of the previous studies have been conducted on a small set of COVID-19 X-ray images, which created an imbalanced dataset and affected the performance of the deep learning models. In this paper, we propose several image processing techniques to augment COVID-19 X-ray images to generate a large and diverse dataset to boost the performance of deep learning algorithms in detecting the virus from chest X-rays. We also propose innovative and robust deep learning models, based on DenseNet201, VGG16, and VGG19, to detect COVID-19 from a large set of chest X-ray images. A performance evaluation shows that the proposed models outperform all existing techniques to date. Our models achieved 99.62% on the binary classification and 95.48% on the multi-class classification. Based on these findings, we provide a pathway for researchers to develop enhanced models with a balanced dataset that includes the highest available COVID-19 chest X-ray images. This work is of high interest to healthcare providers, as it helps to better diagnose COVID-19 from chest X-rays in less time with higher accuracy.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


Author(s):  
Mahyuddin K. M. Nasution Et.al

In the era of information technology, the two developing sides are data science and artificial intelligence. In terms of scientific data, one of the tasks is the extraction of social networks from information sources that have the nature of big data. Meanwhile, in terms of artificial intelligence, the presence of contradictory methods has an impact on knowledge. This article describes an unsupervised as a stream of methods for extracting social networks from information sources. There are a variety of possible approaches and strategies to superficial methods as a starting concept. Each method has its advantages, but in general, it contributes to the integration of each other, namely simplifying, enriching, and emphasizing the results.


Sign in / Sign up

Export Citation Format

Share Document